Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Distance between the spectra of graphs with respect to normalized Laplacian spectra

Mojgan Afkhami / Mehdi Hassankhani / Kazem Khashyarmanesh
  • Corresponding author
  • Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-12 | DOI: https://doi.org/10.1515/gmj-2017-0051

Abstract

Let Gn and Gn be two nonisomorphic graphs on n vertices with spectra (with respect to the adjacency matrix)

λ1λ2λnandλ1λ2λn,

respectively. Define the distance between the spectra of Gn and Gn as

λ(Gn,Gn)=i=1n(λi-λi)2(or use i=1n|λi-λi|).

Define the cospectrality of Gn by

cs(Gn)=min{λ(Gn,Gn):Gn not isomorphic to Gn}.

In this paper, we investigate cs(Gn) for special classes of graphs with respect to normalized Laplacian spectra and we find cs(Kn), cs(nK1) and cs(K2+(n-2)K1) (n2). We also find an upper bound for csn.

Keywords: Spectra of graphs; measures on spectra of graphs

MSC 2010: 05C50; 05C31

References

  • [1]

    A. Abdollahi, S. Janbaz and M. R. Oboudi, Distance between spectra of graphs, Linear Algebra Appl. 466 (2015), 401–408. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    A. Abdollahi and M. R. Oboudi, Cospectrality of graphs, Linear Algebra Appl. 451 (2014), 169–181. CrossrefWeb of ScienceGoogle Scholar

  • [3]

    F. R. K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, American Mathematical Society, Providence, 1997. Google Scholar

  • [4]

    C. Godsil and G. Royle, Algebraic Graph Theory, Grad. Texts in Math. 207, Springer, New York, 2001. Google Scholar

  • [5]

    A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37–39. CrossrefGoogle Scholar

  • [6]

    X. Li and Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem. 51 (2004), 155–166. Google Scholar

  • [7]

    D. Stevanović, Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl. 423 (2007), no. 1, 172–181. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    T. Tao, Topics in Random Matrix Theory, Grad. Stud. Math. 132, American Mathematical Society, Providence, 2012. Google Scholar

About the article

Received: 2015-05-27

Accepted: 2015-09-17

Published Online: 2017-11-12

Published in Print: 2019-06-01


Citation Information: Georgian Mathematical Journal, Volume 26, Issue 2, Pages 227–234, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2017-0051.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in