Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Multi-dimensional periodic problems for higher-order linear hyperbolic equations

Tariel Kiguradze / Noha Al Jaber
Published Online: 2019-02-15 | DOI: https://doi.org/10.1515/gmj-2019-2002

Abstract

For higher-order linear hyperbolic equations the problem on periodic solutions is investigated. The concepts of associated problems, and α-well-posedness are introduced. Necessary and sufficient conditions of well-posedness in the two-dimensional case, as well as unimprovable sufficient conditions of well-posedness and α-well-posedness in the multi-dimensional case are established.

Keywords: Higher-order hyperbolic equation; linear; multi-dimensional; periodic

MSC 2010: 35L35; 35L75; 34B15

References

  • [1]

    A. K. Aziz, Periodic solutions of hyperbolic partial differential equations, Proc. Amer. Math. Soc. 17 (1966), 557–566. CrossrefGoogle Scholar

  • [2]

    A. K. Aziz and S. L. Brodsky, Periodic solutions of a class of weakly nonlinear hyperbolic partial differential equations, SIAM J. Math. Anal. 3 (1972), 300–313. CrossrefGoogle Scholar

  • [3]

    A. K. Aziz and M. G. Horak, Periodic solutions of hyperbolic partial differential equations in the large, SIAM J. Math. Anal. 3 (1972), 176–182. CrossrefGoogle Scholar

  • [4]

    A. K. Aziz and A. M. Meyers, Periodic solutions of hyperbolic partial differential equations in a strip, Trans. Amer. Math. Soc. 146 (1969), 167–178. CrossrefGoogle Scholar

  • [5]

    L. Cesari, Periodic solutions of partial differential equations, Qualitative Methods in the Theory of Non-linear Vibrations, Izdat. Akad. Nauk Ukrain. SSR, Kiev (1961), 440–457. Google Scholar

  • [6]

    L. Cesari, A criterion for the existence in a strip of periodic solutions of hyperbolic partial differential equations, Rend. Circ. Mat. Palermo (2) 14 (1965), 95–118. CrossrefGoogle Scholar

  • [7]

    L. Cesari, Existence in the large of periodic solutions of hyperbolic partial differential equations, Arch. Ration. Mech. Anal. 20 (1965), 170–190. CrossrefGoogle Scholar

  • [8]

    J. K. Hale, Periodic solutions of a class of hyperbolic equations containing a small parameter, Arch. Ration. Mech. Anal. 23 (1966), 380–398. Google Scholar

  • [9]

    L. V. Kantorovich and G. P. Akilov, Functional Analysis (in Russian), Izdat. “Nauka”, Moscow, 1977. Google Scholar

  • [10]

    I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations (in Russian), Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. 30 (1987), 3–103; translation in J. Soviet Math. 43 (1988), no. 2, 2259–2339. Google Scholar

  • [11]

    T. I. Kiguradze, On solutions that are bounded and periodic in a strip of quasilinear hyperbolic systems (in Russian), Differ. Uravn. 30 (1994), no. 10, 1760–1773; translation in Differ. Equ. 30 (1994), no. 10, 1628–1639. Google Scholar

  • [12]

    T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type, Mem. Differ. Equ. Math. Phys. 1 (1994), 1–144. Google Scholar

  • [13]

    T. Kiguradze, On bounded in a strip solutions of quasilinear partial differential equations of hyperbolic type, Appl. Anal. 58 (1995), no. 3–4, 199–214. CrossrefGoogle Scholar

  • [14]

    T. Kiguradze, On periodic in the plane solutions of nonlinear hyperbolic equations, Nonlinear Anal. 39 (2000), no. 2, 173–185. CrossrefGoogle Scholar

  • [15]

    T. Kiguradze and R. Ben-Rabha, On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables, Georgian Math. J. 24 (2017), no. 3, 409–428. Web of ScienceGoogle Scholar

  • [16]

    T. Kiguradze and T. Kusano, On the well-posedness of initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables (in Russian), Differ. Uravn. 39 (2003), no. 4, 516–526; translation in Differ. Equ. 39 (2003), no. 4, 553–563. Google Scholar

  • [17]

    T. Kiguradze and T. Kusano, On ill-posed initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables (in Russian), Differ. Uravn. 39 (2003), no. 10, 1379–1394, 1438–1439; translation in Differ. Equ. 39 (2003), no. 10, 1454–1470. Google Scholar

  • [18]

    T. Kiguradze and T. Kusano, Bounded and periodic in a strip solutions of nonlinear hyperbolic systems with two independent variables, Comput. Math. Appl. 49 (2005), no. 2–3, 335–364. CrossrefGoogle Scholar

  • [19]

    T. Kiguradze and V. Lakshmikantham, On doubly periodic solutions of fourth-order linear hyperbolic equations, Nonlinear Anal. 49 (2002), no. 1, 87–112. CrossrefGoogle Scholar

  • [20]

    T. Kiguradze and T. Smith, On doubly periodic solutions of quasilinear hyperbolic equations of the fourth order, Proceedings of the International Conference on Differential and Difference Equations and Their Applications, Hindawi, New York (2006), 541–553. Google Scholar

  • [21]

    V. Lakshmikantham and S. G. Pandit, Periodic solutions of hyperbolic partial differential equations. Hyperbolic partial differential equations. II, Comput. Math. Appl. 11 (1985), no. 1–3, 249–259. CrossrefGoogle Scholar

  • [22]

    B. P. Liu, The integral operator method for finding almost periodic solutions of nonlinear wave equations, Nonlinear Anal. 11 (1987), no. 5, 553–564. CrossrefGoogle Scholar

  • [23]

    Y. A. Mitropol’skiĭ and G. P. Khoma, Periodic solutions of second-order wave equations. I (in Russian), Ukrain. Mat. Zh. 38 (1986), no. 5, 593–600, 678. Google Scholar

  • [24]

    Y. A. Mitropol’skiĭ and G. P. Khoma, Periodic solutions of second-order wave equations. II (in Russian), Ukrain. Mat. Zh. 38 (1986), no. 6, 733–739, 815. Google Scholar

  • [25]

    Y. A. Mitropol’skiĭ and G. P. Khoma, Periodic solutions of second-order wave equations. III (in Russian), Ukrain. Mat. Zh. 39 (1987), no. 3, 347–353, 406. Google Scholar

  • [26]

    Y. A. Mitropol’skiĭ and B. P. Tkač, Periodic solutions of nonlinear systems of partial differential equations of neutral type (in Russian), Ukrain. Mat. Zh. 21 (1969), 475–486. Google Scholar

  • [27]

    P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967), 145–205. CrossrefGoogle Scholar

  • [28]

    P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations. II, Comm. Pure Appl. Math. 22 (1968), 15–39. Google Scholar

  • [29]

    P. H. Rabinowitz, Time periodic solutions of nonlinear wave equations, Manuscripta Math. 5 (1971), 165–194. CrossrefGoogle Scholar

  • [30]

    S. V. Zhestkov, On periodic solutions of nonlinear hyperbolic systems in a strip (in Russian), Differ. Uravn. 25 (1989), no. 10, 1806–1807. Google Scholar

About the article

Received: 2018-04-02

Accepted: 2018-09-07

Published Online: 2019-02-15

Published in Print: 2019-06-01


Citation Information: Georgian Mathematical Journal, Volume 26, Issue 2, Pages 235–256, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2019-2002.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in