Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Dihedral ∞-simplicial modules and dihedral homology of involutive homotopy unital A -algebras

Sergey V. Lapin
Published Online: 2019-04-06 | DOI: https://doi.org/10.1515/gmj-2019-2018

Abstract

The notion of a dihedral -simplicial module is introduced. The homotopy invariance of the structure of a dihedral -simplicial module is proved. The concept of the dihedral homology of a dihedral -simplicial module is developed. The notion of an involutive homotopy unital A-algebra is introduced. The dihedral -simplicial module is constructed using an involutive homotopy unital A-algebra. The concept of the dihedral homology of an involutive homotopy unital A-algebra is developed. For the dihedral homology of involutive homotopy unital A-algebras, the analogue of the Krasauskas–Lapin–Solov’ev exact sequence is obtained.

Keywords: Dihedral homology; cyclic homology; dihedral simplicial module; homotopy invariant structure

MSC 2010: 55U10; 18G30; 55U43

Dedicated to Professor N. Berikashvili on the occasion of his 90th birthday

References

  • [1]

    N. A. Berikashvili, Differentials of a spectral sequence (in Russian), Trudy Tbiliss. Mat. Inst. Razmadze 51 (1976), 5–106. Google Scholar

  • [2]

    A. Connes, Cohomologie cyclique et foncteurs Extn, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 953–958. Google Scholar

  • [3]

    A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. Google Scholar

  • [4]

    T. V. Kadeishvili, On the theory of homology of fiber spaces (in Russian), Uspekhi Mat. Nauk 35 (1980), no. 3(213), 183–188; translation in Russian Math. Surveys 35 (1980), no. 3, 231–238. Google Scholar

  • [5]

    M. Karoubi, Théorie de Quillen et homologie du groupe orthogonal, Ann. of Math. (2) 112 (1980), no. 2, 207–257. CrossrefGoogle Scholar

  • [6]

    R. L. Krasauskas, S. V. Lapin and Y. P. Solov’ev, Dihedral homology and cohomology. Basic concepts and constructions (in Russian), Mat. Sb. (N. S.) 133(175) (1987), no. 1, 25–48; translation in Math. USSR-Sb. 61 (1988), no. 1, 23–47. Google Scholar

  • [7]

    S. V. Lapin, Differential perturbations and D-differential modules (in Russian), Mat. Sb. 192 (2001), no. 11, 55–76; translation in Sb. Math. 192 (2001), no. 11-12, 1639–1659. Google Scholar

  • [8]

    S. V. Lapin, D-differential A-algebras and spectral sequences (in Russian), Mat. Sb. 193 (2002), no. 1, 119–142; translation in Sb. Math. 193 (2002), no. 1-2, 119–142. Google Scholar

  • [9]

    S. V. Lapin, (DA)-modules over (DA)-algebras, and spectral sequences (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 3, 103–130; translation in Izv. Math. 66 (2002), no. 3, 543–568. Google Scholar

  • [10]

    S. V. Lapin, D-differential E-algebras and multiplicative spectral sequences (in Russian), Mat. Sb. 196 (2005), no. 11, 75–108; translation in Sb. Math. 196 (2005), no. 11-12, 1627–1658. Google Scholar

  • [11]

    S. V. Lapin, D-differential E-algebras and spectral sequences of fibrations (in Russian), Mat. Sb. 198 (2007), no. 10, 3–30; translation in Sb. Math. 198 (2007), no. 9-10, 1379–1406. Google Scholar

  • [12]

    S. V. Lapin, Multiplicative A-structure in the terms of spectral sequences of fibrations (in Russian), Fundam. Prikl. Mat. 14 (2008), no. 6, 141–175; translation in J. Math. Sci. (N.Y.) 164 (2010), no. 1, 95–118. Google Scholar

  • [13]

    S. V. Lapin, Homotopy properties of differential Lie modules over curved coalgebras and Koszul duality (in Russian), Mat. Zametki 94 (2013), no. 3, 354–372; translation in Math. Notes 94 (2013), no. 3-4, 335–350. Google Scholar

  • [14]

    S. V. Lapin, Homotopy simplicial faces and the homology of realizations of simplicial topological spaces (in Russian), Mat. Zametki 94 (2013), no. 5, 661–681; translation in Math. Notes 94 (2013), no. 5-6, 619–635. Google Scholar

  • [15]

    S. V. Lapin, Differential Lie modules over curved colored coalgebras and -simplicial modules (in Russian), Mat. Zametki 96 (2014), no. 5, 709–731; translation in Math. Notes 96 (2014), no. 5-6, 698–715. Google Scholar

  • [16]

    S. V. Lapin, Chain realization of differential modules with -simplicial faces and the B-construction for A-algebras (in Russian), Mat. Zametki 98 (2015), no. 1, 101–124; translation in Math. Notes 98 (2015), no. 1-2, 111–129. Google Scholar

  • [17]

    S. V. Lapin, Homotopy properties of differential modules with simplicial F-faces and D-differential modules, Georgian Math. J. 22 (2015), no. 4, 543–562. Google Scholar

  • [18]

    S. V. Lapin, Homotopy properties of -simplicial coalgebras and homotopy unital supplemented A-algebras (in Russian), Mat. Zametki 99 (2016), no. 1, 55–77; translation in Math. Notes 99 (2016), no. 1-2, 63–81. Google Scholar

  • [19]

    S. V. Lapin, Cyclic modules with -simplicial faces and the cyclic homology of A-algebras (in Russian), Mat. Zametki 102 (2017), no. 6, 874–895; translation in Math. Notes 102 (2017), no. 5-6, 806–823. Google Scholar

  • [20]

    S. V. Lapin, Cyclic homology of cyclic -simplicial modules, Georgian Math. J. 25 (2018), no. 4, 571–581. CrossrefGoogle Scholar

  • [21]

    V. V. Lyubashenko, Homotopy unital A-algebras, preprint (2012), https://arxiv.org/abs/1205.6058.

  • [22]

    J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand Math. Stud. 11, D. Van Nostrand, Princeton, 1967. Google Scholar

  • [23]

    M. Penkava and A. Schwarz, A-algebras and the cohomology of moduli spaces, Lie Groups and Lie algebras: E. B. Dynkin’s Seminar, Adv. Math. Sci. 26, American Mathematical Society, Providence (1995), 91–107. Google Scholar

  • [24]

    Y. P. Solov’ev, Algebraic K-theory of quadratic forms (in Russian), Itogi Nauki i Tekhniki, Algebra. Topology. Geometry 24 (1986), 121–194; translation in J. Soviet Math. 44 (1989) no. 3, 319–371. Google Scholar

  • [25]

    J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275–292. Google Scholar

  • [26]

    J. D. Stasheff, Homotopy associativity of H-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293–312. Google Scholar

  • [27]

    B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology (in Russian), Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217–218; translation in Russian Math. Surveys 38 (1983), no. 22, 198–199. Google Scholar

About the article

Received: 2018-10-03

Accepted: 2019-02-05

Published Online: 2019-04-06

Published in Print: 2019-06-01


Citation Information: Georgian Mathematical Journal, Volume 26, Issue 2, Pages 257–286, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2019-2018.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in