Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

Ripplet transform and its extension to Boehmians

Rajakumar Roopkumar
Published Online: 2017-12-06 | DOI: https://doi.org/10.1515/gmj-2017-0056

Abstract

First, we correct the mistake in the inversion theorem of the ripplet transform in the literature. Next, we prove a convolution theorem for the ripplet transform and extend the ripplet transform as a continuous, linear, injective mapping from a suitable Boehmian space into another Boehmian space.

Keywords: Boehmians; convolution theorem; ripplet transform; wavelet transform

MSC 2010: 44A15; 44A35; 42C20

References

  • [1]

    T. K. Boehme, The support of Mikusiński operators, Trans. Amer. Math. Soc. 176 (1973), 319–334. Google Scholar

  • [2]

    E. J. Candès, Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal. 6 (1999), no. 2, 197–218. CrossrefGoogle Scholar

  • [3]

    E. J. Candès and D. L. Donoho, Continuous curvelet transform. I: Resolution of the wavefront set, Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 162–197. CrossrefGoogle Scholar

  • [4]

    E. J. Candès and D. L. Donoho, Continuous curvelet transform. II: Discretization and frames, Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 198–222. CrossrefGoogle Scholar

  • [5]

    D. Das, M. Chaudhury and M. K. Kundu, Medical image fusion using ripplet transform type 1, Progr. Electromagn. Res. B 30 (2011), 355–370. CrossrefGoogle Scholar

  • [6]

    H. K. Kedarnath, Proposed medical diagnosis system using ripplet transform, Int. J. Sci. Engrg. Res. 5 (2014), no. 3, 1545–1549. Google Scholar

  • [7]

    J. Mikusiński and P. Mikusiński, Quotients de suites et leurs applications dans l’analyse fonctionnelle, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 463–464. Google Scholar

  • [8]

    P. Mikusiński, Convergence of Boehmians, Japan. J. Math. (N.S.) 9 (1983), no. 1, 159–179. CrossrefGoogle Scholar

  • [9]

    D. Nemzer, Extending the Stieltjes transform, Sarajevo J. Math. 10(23) (2014), no. 2, 197–208. Google Scholar

  • [10]

    D. Nemzer, Extending the Stieltjes transform II, Fract. Calc. Appl. Anal. 17 (2014), no. 4, 1060–1074. Google Scholar

  • [11]

    S. M. Rajendran and R. Rajakumar, Curvelet transform for Boehmians, Arab J. Math. Sci. 20 (2014), no. 2, 264–279. CrossrefGoogle Scholar

  • [12]

    R. Roopkumar, Wavelet analysis on a Boehmian space, Int. J. Math. Math. Sci. (2003), no. 15, 917–926. Google Scholar

  • [13]

    R. Roopkumar, An extension of distributional wavelet transform, Colloq. Math. 115 (2009), no. 2, 195–206. Web of ScienceCrossrefGoogle Scholar

  • [14]

    R. Roopkumar, Convolution theorems for wavelet transform on tempered distributions and their extension to tempered Boehmians, Asian-Eur. J. Math. 2 (2009), no. 1, 117–127. CrossrefGoogle Scholar

  • [15]

    R. Roopkumar, Ridgelet transform on square integrable Boehmians, Bull. Korean Math. Soc. 46 (2009), no. 5, 835–844. CrossrefGoogle Scholar

  • [16]

    R. Roopkumar, Ridgelet transform on tempered distributions, Comment. Math. Univ. Carolin. 51 (2010), no. 3, 431–439. Google Scholar

  • [17]

    R. Roopkumar, Extended ridgelet transform on distributions and Boehmians, Asian-Eur. J. Math. 4 (2011), no. 3, 507–521. CrossrefGoogle Scholar

  • [18]

    R. Roopkumar, Extension of ridgelet transform to tempered Boehmians, Novi Sad J. Math. 42 (2012), no. 2, 19–32. Google Scholar

  • [19]

    R. Roopkumar, On extension of Gabor transform to Boehmians, Mat. Vesnik 65 (2013), no. 4, 431–444. Google Scholar

  • [20]

    R. Subash Moorthy and R. Roopkumar, Curvelet transform on periodic distributions, Integral Transforms Spec. Funct. 25 (2014), no. 11, 874–887. CrossrefWeb of ScienceGoogle Scholar

  • [21]

    R. Subash Moorthy and R. Roopkumar, Curvelet transform on tempered distributions, Asian-Eur. J. Math. 8 (2015), no. 2, Article ID 1550031. Web of ScienceGoogle Scholar

  • [22]

    J. Xu and D. Wu, Ripplet transform for feature extraction, Proc. SPIE 6970 (2008), 10.1117/12.777302. Google Scholar

  • [23]

    J. Xu, L. Yang and D. Wu, Ripplet: A new transform for image Processing, J. Vis. Commun. Image Represent. 21 (2010), no. 7, 627–639. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-09-01

Revised: 2016-06-30

Accepted: 2016-07-04

Published Online: 2017-12-06


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2017-0056.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in