Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio

IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

See all formats and pricing
More options …
Ahead of print


Mixing coded systems

Dawoud Ahmadi Dastjerdi / Maliheh Dabbaghian Amiri
  • Corresponding author
  • Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-05 | DOI: https://doi.org/10.1515/gmj-2017-0058


We show that a coded system is mixing if and only if it is totally transitive. If in addition it has a generator the length of whose elements are relatively prime, then it has strong property P. We continue by showing that a mixing half-synchronized system has such a generator. Moreover, we give an example of a mixing coded system which does not have any generator the length of whose elements are relatively prime.

Keywords: Coded system; generator; half-synchronized system

MSC 2010: 54H20; 37B10; 37A25


  • [1]

    J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley and B. Trotta, Dynamics of spacing shifts, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 4207–4232. CrossrefGoogle Scholar

  • [2]

    F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic dynamics and its Applications (New Haven 1991), Contemp. Math. 135, American Mathematical Society, Providence (1992), 95–105. Google Scholar

  • [3]

    F. Blanchard and G. Hansel, Systémes codés, Theoret. Comput. Sci. 44 (1986), no. 1, 17–49. CrossrefGoogle Scholar

  • [4]

    J. Epperlein, D. Kwietniak and P. Oprocha, Mixing properties in coded systems, preprint (2015), https://arxiv.org/abs/1503.02838.

  • [5]

    D. Fiebig and U. Fiebig, Covers for coded systems, Symbolic Dynamics and its Applications (New Haven 1991), Contemp. Math. 135, American Mathematical Society, Providence (1992), 139–179. Google Scholar

  • [6]

    W. Huang and X. Ye, Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 825–846. CrossrefGoogle Scholar

  • [7]

    W. Huang and X. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc. 357 (2005), no. 2, 669–694. CrossrefGoogle Scholar

  • [8]

    D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. Google Scholar

  • [9]

    T. K. Subrahmonian Moothathu and P. Oprocha, Syndetic proximality and scrambled sets, Topol. Methods Nonlinear Anal. 41 (2013), no. 2, 421–461. Google Scholar

About the article

Received: 2016-02-03

Accepted: 2016-05-20

Published Online: 2017-12-05

Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2017-0058.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in