Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio

IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

See all formats and pricing
More options …
Ahead of print


The well-posedness of a nonlocal multipoint problem for a differential operator equation of second order

Vasyl V. Gorodetskyi / Olga V. Martynyuk
  • Corresponding author
  • Yurii Fedkovych Chernivtsi National University, Kotsyubins’kogo Str. 2, 58000 Chernivtsi, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olesia V. Feduh
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/gmj-2018-0007


We establish the well-posedness of a nonlocal multipoint problem for a second-order evolution equation with respect to a time variable with an operator having a discrete spectrum. A nonlocal condition is considered to be satisfied in a weak sense in the space of formal Fourier series that are identified with continuous linear functionals (generalized elements) on some space connected with the operator.

Keywords: Nonlocal multipoint problem; spaces of generalized elements; operator differential equations; Fourier series; convolution; self-conjugated operators

MSC 2010: 34B10; 46B20


  • [1]

    K. I. Babenko, On a new problem of quasi-analyticity and on the Fourier transform of entire functions (in Russian), Trudy Moskov. Mat. Obšč. 5 (1956), 523–542. Google Scholar

  • [2]

    V. A. Belavin, S. P. Kapitsa and S. P. Kurdyumov, A mathematical model of global demographic processes with regard to the spatial distribution (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 38 (1998), no. 6, 885–902. Google Scholar

  • [3]

    A. Bouzinab and O. Arino, On the existence and uniqueness for an age-dependent population model with nonlinear growth, Facta Univ. Ser. Math. Inform. 8 (1993), 55–68. Google Scholar

  • [4]

    J. R. Cannon and J. van der Hoek, Diffusion subject to the specification of mass, J. Math. Anal. Appl. 115 (1986), no. 2, 517–529. CrossrefGoogle Scholar

  • [5]

    V. I. C̆esalin, A problem with nonlocal boundary conditions for operator-differential equations of odd order (in Russian), Differ. Uravn. 13 (1977), no. 3, 468–476. Google Scholar

  • [6]

    A. A. Dezin, Operators with first derivative with respect to “time” and non-local boundary conditions (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 61–86. Google Scholar

  • [7]

    V. I. Gorbachuk, On the solvability of the Dirichlet problem for a second-order operator-differential equation in various spaces (in Russian), Direct and Inverse Problems of the Spectral Theory of Differential Operators, Academy Nauk Ukraine, Kiev (1985), 8–22. Google Scholar

  • [8]

    V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator-Differential Equations (in Russian), “Naukova Dumka”, Kiev, 1984. Google Scholar

  • [9]

    V. V. Gorodetskyi, The Riemann Localization Problem: Some Aspects and Applications, Ruta, Chernivtsi, 1998. Google Scholar

  • [10]

    V. V. Gorodetskyi, The Cauchy Problem for Evolution Equations of Infinite Order, Ruta, Chernivtsi, 2005. Google Scholar

  • [11]

    M. Junusov, Operator equations with small parameter and nonlocal boundary conditions (in Russian), Differ. Uravn. 17 (1981), no. 1, 172–181. Google Scholar

  • [12]

    A. R. Maĭkov, A. D. Poezd and S. A. Yakunin, An efficient method for calculating nonstationary radiation conditions that are nonlocal in time for waveguide systems (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 30 (1990), no. 8, 1267–1271; translation in USSR Comput. Math. Math. Phys. 30 (1990), no. 4, 213–216. Google Scholar

  • [13]

    A. A. Makarov, On the existence of a well-posed two-point boundary value problem in a layer for systems of pseudo-differential equations (in Russian), Differ. Uravn. 30 (1994), no. 1, 144–150; translation in Differ. Equ. 30 (1994), no. 1, 133–138. Google Scholar

  • [14]

    A. K. Mamyan, General boundary value problems in a layer (in Russian), Dokl. Akad. Nauk SSSR 267 (1982), no. 2, 292–296. Google Scholar

  • [15]

    A. M. Nakhushev, An approximate method for solving boundary value problems for differential equations and its application to the dynamics of ground moisture and ground water (in Russian), Differ. Uravn. 18 (1982), no. 1, 72–81. Google Scholar

  • [16]

    A. M. Nakhushev, Nonlocal boundary value problems with shift and their connection with loaded equations (in Russian), Differ. Uravn. 21 (1985), no. 1, 92–101. Google Scholar

  • [17]

    A. M. Nakhushev, Equations of Mathematical Biology (in Russian), Visshaya Shkola, Moscow, 1995. Google Scholar

  • [18]

    B. Y. Ptashnyk, V. S. Il’kiv, I. Y. Kmit’ and V. M. Polischuk, Nonlocal Boundary Value Problems with Partial Differential Equations (in Ukrainian), Naukova Dumka, Kyiv, 2002. Google Scholar

  • [19]

    V. K. Romanko, Boundary value problems for a certain class of differential operators (in Russian), Differ. Uravn. 10 (1974), 117–131. Google Scholar

  • [20]

    A. A. Samarskiĭ, Some problems of the theory of differential equations (in Russian), Differ. Uravn. 16 (1980), no. 11, 1925–1935. Google Scholar

  • [21]

    A. L. Skubachevskiĭ, Model nonlocal problems for elliptic equations in dihedral angles (in Russian), Differ. Uravn. 26 (1990), no. 1, 120–131; translation in Differ. Equ. 26 (1990), no. 1, 106–115. Google Scholar

  • [22]

    J. Song, Some developments in mathematical demography and their application to the People’s Republic of China, Theoret. Pop. Biol. 22 (1982), no. 3, 382–391. CrossrefGoogle Scholar

About the article

Received: 2015-03-27

Revised: 2016-03-22

Accepted: 2016-07-05

Published Online: 2018-07-04

Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0007.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in