Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

Wavelets method for solving nonlinear stochastic Itô–Volterra integral equations

Mohammad Hossein Heydari / Mohammad Reza Hooshmandasl / Carlo Cattani
Published Online: 2018-02-22 | DOI: https://doi.org/10.1515/gmj-2018-0009

Abstract

In this paper, a new computational method based on the Chebyshev wavelets (CWs) is proposed for solving nonlinear stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix (SOM) for the CWs is obtained. By using these basis functions and their SOM, such problems can be transformed into nonlinear systems of algebraic equations which can be simply solved. Moreover, a new technique for computation of nonlinear terms in such problems is presented. Further error analysis of the proposed method is also investigated and the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient.

Keywords: Chebyshev wavelets; stochastic operational matrix; nonlinear stochastic Itô–Volterra integral equations; Brownian motion process; stochastic population growth model

MSC 2010: 60H20

References

  • [1]

    A. Abdulle and A. Blumenthal, Stabilized multilevel Monte Carlo method for stiff stochastic differential equations, J. Comput. Phys. 251 (2013), 445–460. Web of ScienceCrossrefGoogle Scholar

  • [2]

    E. Babolian and F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Appl. Math. Comput. 188 (2007), no. 1, 417–426. Web of ScienceGoogle Scholar

  • [3]

    M. A. Berger and V. J. Mizel, Volterra equations with Itô integrals. I, J. Integral Equations 2 (1980), no. 3, 187–245. Google Scholar

  • [4]

    J. Biazar and H. Ebrahimi, Chebyshev wavelets approach for nonlinear systems of Volterra integral equations, Comput. Math. Appl. 63 (2012), no. 3, 608–616. Web of ScienceCrossrefGoogle Scholar

  • [5]

    C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Seri. Comput. Phys., Springer, New York, 1988. Google Scholar

  • [6]

    J. C. Cortés, L. Jódar and L. Villafuerte, Mean square numerical solution of random differential equations: Facts and possibilities, Comput. Math. Appl. 53 (2007), no. 7, 1098–1106. Web of ScienceCrossrefGoogle Scholar

  • [7]

    J. C. Cortés, L. Jódar and L. Villafuerte, Numerical solution of random differential equations: A mean square approach, Math. Comput. Model. 45 (2007), no. 7–8, 757–765. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    J. Djordjević and S. Janković, On a class of backward stochastic Volterra integral equations, Appl. Math. Lett. 26 (2013), no. 12, 1192–1197. CrossrefWeb of ScienceGoogle Scholar

  • [9]

    K. D. Elworthy, A. Truman, H. Z. Zhao and J. G. Gaines, Approximate travelling waves for generalized KPP equations and classical mechanics, Proc. Roy. Soc. Lond. Ser. A 446 (1994), no. 1928, 529–554. CrossrefGoogle Scholar

  • [10]

    D. Gillespie, Y. Cao and L. Petzold, Adaptive explicit-implicit tau-leaping method with automatic tau selection, J. Chem. Phys. 126 (2007), Article ID 224101. Web of ScienceGoogle Scholar

  • [11]

    M. H. Heydari, M. R. Hooshmandasl and F. M. Maalek Ghaini, A good approximate solution for Liénard equation in a large interval using block pulse functions, J. Math. Ext. 7 (2013), no. 1, 17–32. Google Scholar

  • [12]

    M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys. 270 (2014), 402–415. CrossrefWeb of ScienceGoogle Scholar

  • [13]

    M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and F. Mohammadi, Wavelet collocation method for solving multiorder fractional differential equations, J. Appl. Math. 2012 (2012), Article ID 542401. Web of ScienceGoogle Scholar

  • [14]

    M. H. Heydari, M. R. Hooshmandasl, F. Mohammadi and C. Cattani, Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 1, 37–48. CrossrefWeb of ScienceGoogle Scholar

  • [15]

    H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach, 2nd ed., Universitext, Springer, New York, 2010. Google Scholar

  • [16]

    S. Janković and D. Ilić, One linear analytic approximation for stochastic integrodifferential equations, Acta Math. Sci. Ser. B Engl. Ed. 30 (2010), no. 4, 1073–1085. Google Scholar

  • [17]

    M. Khodabin, K. Maleknejad and M. Asgari, Numerical solution of a stochastic population growth model in a closed system, Adv. Difference Equ. 2013 (2013), Paper No. 130. Web of ScienceGoogle Scholar

  • [18]

    M. Khodabin, K. Maleknejad, M. Rostami and M. Nouri, Numerical solution of stochastic differential equations by second order Runge–Kutta methods, Math. Comput. Model. 53 (2011), no. 9–10, 1910–1920. Web of ScienceCrossrefGoogle Scholar

  • [19]

    M. Khodabin, K. Maleknejad, M. Rostami and M. Nouri, Interpolation solution in generalized stochastic exponential population growth model, Appl. Math. Model. 36 (2012), no. 3, 1023–1033. CrossrefWeb of ScienceGoogle Scholar

  • [20]

    M. Khodabin, K. Maleknejad, M. Rostami and M. Nouri, Numerical approach for solving stochastic Volterra–Fredholm integral equations by stochastic operational matrix, Comput. Math. Appl. 64 (2012), no. 6, 1903–1913. CrossrefWeb of ScienceGoogle Scholar

  • [21]

    P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, 2nd ed., Applications of Mathematics (New York) 23, Springer, Berlin, 1995. Web of ScienceGoogle Scholar

  • [22]

    P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 3rd ed., Appl. Math. (New York) 23, Springer, Berlin, 1999. Web of ScienceGoogle Scholar

  • [23]

    J. J. Levin and J. A. Nohel, On a system of integro-differential equations occurring in reactor dynamics, J. Math. Mech. 9 (1960), 347–368. Google Scholar

  • [24]

    K. Maleknejad, M. Khodabin and M. Rostami, A numerical method for solving m-dimensional stochastic Itô–Volterra integral equations by stochastic operational matrix, Comput. Math. Appl. 63 (2012), no. 1, 133–143. Web of ScienceCrossrefGoogle Scholar

  • [25]

    K. Maleknejad, M. Khodabin and M. Rostami, Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions, Math. Comput. Model. 55 (2012), no. 3–4, 791–800. CrossrefWeb of ScienceGoogle Scholar

  • [26]

    R. K. Miller, On Volterra’s population equation, SIAM J. Appl. Math. 14 (1966), 446–452. CrossrefGoogle Scholar

  • [27]

    M. G. Murge and B. G. Pachpatte, On second order Itô type stochastic integro-differential equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 30 (1984), no. 5, 25–34. Google Scholar

  • [28]

    M. G. Murge and B. G. Pachpatte, Successive approximations for solutions of second order stochastic integrodifferential equations of Ito type, Indian J. Pure Appl. Math. 21 (1990), no. 3, 260–274. Google Scholar

  • [29]

    M. N. Oğuztöreli, Time-Lag Control Systems, Math. Sci. Eng. 24, Academic Press, New York, 1966. Google Scholar

  • [30]

    B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, 5th ed., Universitext, Springer, Berlin, 1998. Google Scholar

  • [31]

    E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Stoch. Model. Appl. Probab. 64, Springer, Berlin, 2010. Web of ScienceGoogle Scholar

  • [32]

    S. Sohrabi, Comparision Chebyshev wavelets method with BPFs method for solving Abel’s integral equation, Ain Shams Eng. J. 2 (2011), 249–254. CrossrefGoogle Scholar

  • [33]

    J. Villà-Freixa, P. Rué and K. Burrage, Simulation methods with extended stability for stiff biochemical Kinetics, BMC Syst. Biol. 4 (2010), Paper No. 110. Web of ScienceGoogle Scholar

  • [34]

    J. Yong, Backward stochastic Volterra integral equations and some related problems, Stochastic Process. Appl. 116 (2006), no. 5, 779–795. CrossrefGoogle Scholar

  • [35]

    X. Zhang, Euler schemes and large deviations for stochastic Volterra equations with singular kernels, J. Differential Equations 244 (2008), no. 9, 2226–2250. CrossrefWeb of ScienceGoogle Scholar

  • [36]

    X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation, J. Funct. Anal. 258 (2010), no. 4, 1361–1425. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-10-17

Accepted: 2016-03-23

Published Online: 2018-02-22


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0009.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in