Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

Certain commutativity criteria for rings with involution involving generalized derivations

Badr Nejjar / Ali Kacha / Abdellah Mamouni
  • Department of Mathematics, Faculty of Science and Technology Box 509-Boutalamine, University Moulay Ismaïl, Errachidia, Morocco
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lahcen Oukhtite
  • Corresponding author
  • Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S. M. Ben Abdellah Fez, Fez, Morocco
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-28 | DOI: https://doi.org/10.1515/gmj-2018-0010

Abstract

In this article we investigate some commutativity criteria for a ring with involution (R,) in which generalized derivations satisfy certain algebraic identities. Moreover, we provide examples to show that the assumed restriction cannot be relaxed.

Keywords: Prime ring; involution; commutativity; derivation; generalized derivation

MSC 2010: 16N60; 16W10; 16W25

References

  • [1]

    S. Ali and N. A. Dar, On -centralizing mappings in rings with involution, Georgian Math. J. 21 (2014), no. 1, 25–28. Google Scholar

  • [2]

    S. Ali, N. A. Dar and M. Asci, On derivations and commutativity of prime rings with involution, Georgian Math. J. 23 (2016), no. 1, 9–14. Web of ScienceGoogle Scholar

  • [3]

    S. Ali, N. A. Dar and A. N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes 16 (2015), no. 1, 17–24. Google Scholar

  • [4]

    S. Ali and S. Huang, On derivations in semiprime rings, Algebr. Represent. Theory 15 (2012), no. 6, 1023–1033. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    M. Ashraf and A. Khan, Commutativity of -prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova 125 (2011), 71–79. Google Scholar

  • [6]

    M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), no. 1–2, 3–8. CrossrefGoogle Scholar

  • [7]

    M. Ashraf and M. A. Siddeeque, On certain differential identities in prime rings with involution, Miskolc Math. Notes 16 (2015), no. 1, 33–44. Google Scholar

  • [8]

    H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), no. 4, 337–343. CrossrefGoogle Scholar

  • [9]

    M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992), no. 1, 205–206. CrossrefGoogle Scholar

  • [10]

    N. A. Dar and S. Ali, On -commuting mappings and derivations in rings with involution, Turkish J. Math. 40 (2016), no. 4, 884–894. Google Scholar

  • [11]

    I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), no. 3, 369–370. CrossrefGoogle Scholar

  • [12]

    M. Hongan, A note on semiprime rings with derivation, Int. J. Math. Math. Sci. 20 (1997), no. 2, 413–415. CrossrefGoogle Scholar

  • [13]

    M. T. Koşan, T. K. Lee and Y. Zhou, Identities with Engel conditions on derivations, Monatsh. Math. 165 (2012), no. 3–4, 543–556. Web of ScienceCrossrefGoogle Scholar

  • [14]

    P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sin. 11 (1983), no. 1, 75–80. Google Scholar

  • [15]

    A. Mamouni and L. Oukhtite, Differential identities on Jordan ideals of rings with involution, Hacet. J. Math. Stat. 45 (2016), no. 1, 49–55. Web of ScienceGoogle Scholar

  • [16]

    B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45 (2017), no. 2, 698–708. CrossrefGoogle Scholar

  • [17]

    L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carolin. 54 (2013), no. 4, 447–457. Google Scholar

  • [18]

    M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1393–1396. Google Scholar

  • [19]

    N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ. 44 (2002), 43–49. Google Scholar

About the article

Received: 2016-01-11

Revised: 2016-07-03

Accepted: 2016-09-21

Published Online: 2018-03-28


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0010.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in