Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2017: 0.23

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

Mann iteration process for monotone nonexpansive mappings with a graph

Monther Rashed AlfuraidanORCID iD: http://orcid.org/0000-0002-3641-290X
Published Online: 2018-06-13 | DOI: https://doi.org/10.1515/gmj-2018-0036

Abstract

Let (X,) be a Banach space. Let C be a nonempty, bounded, closed and convex subset of X and let T:CC be a G-monotone nonexpansive mapping. In this work, it is shown that the Mann iteration sequence defined by

xn+1=tnT(xn)+(1-tn)xn,n=1,2,,

proves the existence of a fixed point of G-monotone nonexpansive mappings.

Keywords: Directed graph; fixed point; Mann iteration process; monotone mapping; nonexpansive mapping; Opial condition; uniformly convex Banach space; weakly connected graph

MSC 2010: 06F30; 46B20; 47E10

References

  • [1]

    S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications, Fund. Math. 3 (1922), 133–181. CrossrefGoogle Scholar

  • [2]

    B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd ed., North-Holland Math. Stud. 68, North-Holland, Amsterdam, 1985. Google Scholar

  • [3]

    B. A. Bin Dehaish and M. A. Khamsi, Mann iteration process for monotone nonexpansive mappings, Fixed Point Theory Appl. 2015 (2015), Paper No. 177. Web of ScienceGoogle Scholar

  • [4]

    F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965), 1041–1044. CrossrefGoogle Scholar

  • [5]

    K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Topological Methods in Nonlinear Functional Analysis (Toronto 1982), Contemp. Math. 21, American Mathematical Society, Providence (1983), 115–123. Google Scholar

  • [6]

    K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge University Press, Cambridge, 1990. Google Scholar

  • [7]

    D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258. CrossrefGoogle Scholar

  • [8]

    S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), no. 1, 65–71. CrossrefGoogle Scholar

  • [9]

    J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1359–1373. Google Scholar

  • [10]

    M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure Appl. Math. (New York), Wiley-Interscience, New York, 2001. Google Scholar

  • [11]

    W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. CrossrefGoogle Scholar

  • [12]

    M. A. Krasnosel’skiĭ, Two remarks on the method of successive approximations (in Russian), Uspekhi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123–127. Google Scholar

  • [13]

    J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), no. 3, 223–239. CrossrefGoogle Scholar

  • [14]

    Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. CrossrefGoogle Scholar

  • [15]

    A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435–1443. CrossrefGoogle Scholar

About the article

Received: 2015-07-15

Revised: 2016-04-15

Accepted: 2016-05-30

Published Online: 2018-06-13


Funding Source: King Fahd University of Petroleum and Minerals

Award identifier / Grant number: IP142-MATH-111

The author would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals for funding this work through project no. IP142-MATH-111.


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0036.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in