Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

On an approximate solution of a class of surface singular integral equations of the first kind

Elnur H. Khalilov
Published Online: 2018-06-13 | DOI: https://doi.org/10.1515/gmj-2018-0038

Abstract

In this work, a method for calculating an approximate solution of a singular integral equation of first kind is presented for the Neumann boundary value problems for the Helmholtz equation.

Keywords: Helmholtz equation; Neumann boundary value problems; singular integral equation of first kind; cubature formula

MSC 2010: 45E05; 31B10

References

  • [1]

    D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Pure Appl. Math. (New York), John Wiley & Sons, New York, 1983. Google Scholar

  • [2]

    J. Giroire, Integral equations for exterior problems for the Helmholtz equation, Rapport Interne No. 40, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, 1978. Google Scholar

  • [3]

    J. Giroire and J. C. Nédélec, Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp. 32 (1978), no. 144, 973–990. CrossrefGoogle Scholar

  • [4]

    G. C. Hsiao and W. L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), no. 3, 449–481. CrossrefGoogle Scholar

  • [5]

    E. H. Khalilov, Cubic formula for class of weakly singular surface integrals, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 39 (2013), 69–76. Google Scholar

  • [6]

    A. A. Kashirin and S. I. Smagin, Potential-based numerical solution of Dirichlet problems for the Helmholtz equation (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 52 (2012), no. 8, 1492–1505; translation in Comput. Math. Math. Phys. 52 (2012), no. 8, 1173–1185. Google Scholar

  • [7]

    Y. A. Kustov and B. I. Musaev, A cubature formula for double singular integral and its application (in Russian), Dep. in VINITI. No. 4281-81, Moscow, 1981. Google Scholar

  • [8]

    N. Mustafa and E. H. Khalilov, The collocation method for the solution of boundary integral equations, Appl. Anal. 88 (2009), no. 12, 1665–1675. CrossrefWeb of ScienceGoogle Scholar

  • [9]

    J. C. Nédélec, Curved finite element methods for the solution of singular integral equations on surfaces in 3, Comput. Methods Appl. Mech. Engrg. 8 (1976), no. 1, 61–80. Google Scholar

  • [10]

    V. S. Vladimirov, The Equations of Mathematical Physics (in Russian), 3rd ed., Izdat. “Nauka”, Moscow, 1976. Google Scholar

About the article

Received: 2016-01-11

Revised: 2016-07-15

Accepted: 2016-08-12

Published Online: 2018-06-13


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0038.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in