Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

Representations for the image-kernel (p,q)-inverses of block matrices in rings

Dijana Mosić
Published Online: 2018-06-13 | DOI: https://doi.org/10.1515/gmj-2018-0042

Abstract

We present the conditions for a block matrix of a ring to have the image-kernel (p,q)-inverse in the generalized Banachiewicz–Schur form. We give representations for the image-kernel inverses of the sum and the product of two block matrices. Some characterizations of the image-kernel (p,q)-inverse in a ring with involution are investigated too.

Keywords: Outer inverse; idempotents; ring

MSC 2010: 16B99; 15A09; 46L05

References

  • [1]

    J. K. Baksalary and G. P. H. Styan, Generalized inverses of partitioned matrices in Banachiewicz–Schur form, Linear Algebra Appl. 354 (2002), 41–47. CrossrefGoogle Scholar

  • [2]

    J. Benítez and N. Thome, The generalized Schur complement in group inverses and (k+1)-potent matrices, Linear Multilinear Algebra 54 (2006), no. 6, 405–413. Google Scholar

  • [3]

    J. Cao and Y. Xue, The characterizations and representations for the generalized inverses with prescribed idempotents in Banach algebras, Filomat 27 (2013), no. 5, 851–863. Web of ScienceCrossrefGoogle Scholar

  • [4]

    N. Castro-González and M. F. Martínez-Serrano, Drazin inverse of partitioned matrices in terms of Banachiewicz–Schur forms, Linear Algebra Appl. 432 (2010), no. 7, 1691–1702. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    D. S. Djordjević and Y. Wei, Outer generalized inverses in rings, Comm. Algebra 33 (2005), no. 9, 3051–3060. CrossrefGoogle Scholar

  • [6]

    G. Kantún-Montiel, Outer generalized inverses with prescribed ideals, Linear Multilinear Algebra 62 (2014), no. 9, 1187–1196. Web of ScienceCrossrefGoogle Scholar

  • [7]

    J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), no. 1, 137–152. CrossrefGoogle Scholar

  • [8]

    M. Z. Kolundžija, (P,Q)-outer generalized inverse of block matrices in Banach algebras, Banach J. Math. Anal. 8 (2014), no. 1, 98–108. Web of ScienceGoogle Scholar

  • [9]

    S. H. Kulkarni and D. Sukumar, The condition spectrum, Acta Sci. Math. (Szeged) 74 (2008), no. 3–4, 625–641. Google Scholar

  • [10]

    D. Mosić and D. S. Djordjević, Inner image-kernel (p,q)-inverses in rings, Appl. Math. Comput. 239 (2014), 144–152. Web of ScienceGoogle Scholar

  • [11]

    D. Mosić, D. S. Djordjević and G. Kantún-Montiel, Image-kernel (P,Q)-inverses in rings, Electron. J. Linear Algebra 27 (2014), 272–283. Google Scholar

  • [12]

    B. Načevska and D. S. Djordjević, Outer generalized inverses in rings and related idempotents, Publ. Math. Debrecen 73 (2008), no. 3–4, 309–316. Google Scholar

  • [13]

    V. Rakočević, Functional Analysis (in Serbian), Naučna knjiga, Belgrade, 1994. Google Scholar

  • [14]

    D. Sukumar, Comparative results on eigenvalues, pseudospectra and conditionspectra, preprint (2011), https://arxiv.org/abs/1109.2731.

  • [15]

    L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, 2005. Google Scholar

About the article

Received: 2015-08-03

Revised: 2017-12-28

Accepted: 2018-02-05

Published Online: 2018-06-13


The author was supported by the Ministry of Education and Science, Republic of Serbia, grant no. 174007.


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0042.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in