Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

A quantitative Balian–Low theorem for higher dimensions

Faruk TemurORCID iD: http://orcid.org/0000-0003-1519-4082
Published Online: 2018-06-30 | DOI: https://doi.org/10.1515/gmj-2018-0046

Abstract

We extend the quantitative Balian–Low theorem of Nitzan and Olsen to higher dimensions. We use Zak transform methods and dimension reduction. The characterization of the Gabor–Riesz bases by the Zak transform allows us to reduce the problem to the quasiperiodicity and the boundedness from below of the Zak transforms of the Gabor–Riesz basis generators, two properties for which dimension reduction is possible.

Keywords: Uncertainty principle; Balian–Low theorem

MSC 2010: 42C15; 42A38

References

  • [1]

    R. Balian, Un principe d’incertitude fort en théorie du signal ou en mécanique quantique, C. R. Acad. Sci. Paris Sér. II 292 (1981), no. 20, 1357–1362. Google Scholar

  • [2]

    J. J. Benedetto, W. Czaja, P. Gadziński and A. M. Powell, The Balian–Low theorem and regularity of Gabor systems, J. Geom. Anal. 13 (2003), no. 2, 239–254. CrossrefGoogle Scholar

  • [3]

    I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961–1005. CrossrefGoogle Scholar

  • [4]

    G. B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd ed., Pure Appl. Math. (New York), John Wiley & Sons, New York, 1999. Google Scholar

  • [5]

    K. Gröchenig, Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001. Google Scholar

  • [6]

    K. Gröchenig, D. Han, C. Heil and G. Kutyniok, The Balian–Low theorem for symplectic lattices in higher dimensions, Appl. Comput. Harmon. Anal. 13 (2002), no. 2, 169–176. CrossrefGoogle Scholar

  • [7]

    P. Jaming, Nazarov’s uncertainty principles in higher dimension, J. Approx. Theory 149 (2007), no. 1, 30–41. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    F. E. Low, Complete sets of wave packets, A Passion for Physics: Essays in Honor of Geoffrey Chew, World Scientific, Singapore (1985), 17–22. Google Scholar

  • [9]

    F. L. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type (in Russian), Algebra i Analiz 5 (1993), no. 4, 3–66; translation in St. Petersburg Math. J. 5 (1994), no. 4, 663–717. Google Scholar

  • [10]

    S. Nitzan and J.-F. Olsen, A quantitative Balian–Low theorem, J. Fourier Anal. Appl. 19 (2013), no. 5, 1078–1092. Web of ScienceCrossrefGoogle Scholar

  • [11]

    W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. Google Scholar

About the article

Received: 2016-06-27

Revised: 2017-02-22

Accepted: 2017-03-16

Published Online: 2018-06-30


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0046.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in