Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio

IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

See all formats and pricing
More options …
Ahead of print


The effect of perturbations of frames and fusion frames on their redundancies

Asghar Rahimi / Golaleh Zandi / Bayaz Daraby
Published Online: 2018-07-18 | DOI: https://doi.org/10.1515/gmj-2018-0049


An interesting question about the perturbed sequences is: when do they inherit the properties of the original one? An elegant relation between frames (fusion frames) and their perturbations is the relation of their redundancies. In this paper, we investigate these relationships. Also, we express the redundancy of frames (fusion frames) in terms of the cosine angle between some subspaces.

Keywords: Fusion frame; redundancy function; perturbation; infimum cosine angle

MSC 2010: 42C40; 41A58; 47A58


  • [1]

    R. Balan, Stability theorems for Fourier frames and wavelet Riesz bases, J. Fourier Anal. Appl. 3 (1997), no. 5, 499–504. CrossrefGoogle Scholar

  • [2]

    B. G. Bodmann, P. G. Casazza and G. Kutyniok, A quantitative notion of redundancy for finite frames, Appl. Comput. Harmon. Anal. 30 (2011), no. 3, 348–362. CrossrefWeb of ScienceGoogle Scholar

  • [3]

    A. M. Bruckstein, D. L. Donoho and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev. 51 (2009), no. 1, 34–81. CrossrefWeb of ScienceGoogle Scholar

  • [4]

    P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, Frames and Operator Theory, Contemp. Math. 345, American Mathematical Society, Providence (2004), 87–113. Google Scholar

  • [5]

    P. Casazza and G. Kutyniok, Finite Frames: Theory and Applications, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2013. Google Scholar

  • [6]

    P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 114–132. CrossrefWeb of ScienceGoogle Scholar

  • [7]

    P. G. Casazza and J. C. Tremain, The Kadison–Singer problem in mathematics and engineering, Proc. Natl. Acad. Sci. USA 103 (2006), no. 7, 2032–2039. CrossrefGoogle Scholar

  • [8]

    O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003. Google Scholar

  • [9]

    O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33–47. Google Scholar

  • [10]

    R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. CrossrefGoogle Scholar

  • [11]

    Y. C. Eldar and G. D. Forney, Jr., Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory 48 (2002), no. 3, 599–610. CrossrefGoogle Scholar

  • [12]

    A. Ghaani Farashahi, Cyclic wave packet transform on finite Abelian groups of prime order, Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), no. 6, Article ID 1450041. Web of ScienceGoogle Scholar

  • [13]

    A. Ghaani Farashahi, Wave packet transform over finite fields, Electron. J. Linear Algebra 30 (2015), 507–529. CrossrefGoogle Scholar

  • [14]

    A. Ghaani Farashahi, Wave packet transforms over finite cyclic groups, Linear Algebra Appl. 489 (2016), 75–92. Web of ScienceCrossrefGoogle Scholar

  • [15]

    S. Heineken, E. Mathusika and V. Paternostro, Perturbed frame sequences: canonical dual systems, approximate reconstructions and applications, Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), no. 2, Article ID 1450019. Web of ScienceGoogle Scholar

  • [16]

    V. Kaftal, D. R. Larson and S. Zhang, Operator-valued frames, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6349–6385. CrossrefGoogle Scholar

  • [17]

    G. Kutyniok, J. Lemvig and W. Q. Lim, Optimally sparse approximations of 3D functions by compactly supported shearlet frames, SIAM J. Math. Anal. 44 (2012), no. 4, 2962–3017. CrossrefWeb of ScienceGoogle Scholar

  • [18]

    G. Kutyniok, V. Mehrmann and P. Petersen, Regularization and numerical solution of the inverse scattering problem using shearlet frames, J. Inverse Ill-Posed Probl. 25 (2017), no. 3, 287–309. Web of ScienceGoogle Scholar

  • [19]

    L. Oeding, E. Robeva and B. Sturmfels, Decomposing tensors into frames, Adv. in Appl. Math. 73 (2016), 125–153. CrossrefGoogle Scholar

  • [20]

    A. Rahimi, G. Zandi and B. Daraby, Redundancy of fusion frames in Hilbert spaces, Complex Anal. Oper. Theory 10 (2016), no. 3, 545–565. Web of ScienceCrossrefGoogle Scholar

  • [21]

    W. Sun, g-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437–452. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-04-06

Revised: 2016-06-02

Accepted: 2016-06-06

Published Online: 2018-07-18

Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0049.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in