Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio

IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2017: 0.23

See all formats and pricing
More options …
Ahead of print


Stabilization of 3D Navier–Stokes–Voigt equations

Cung The Anh
  • Corresponding author
  • Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nguyen Viet Tuan
Published Online: 2018-12-05 | DOI: https://doi.org/10.1515/gmj-2018-0067


We consider 3D Navier–Stokes–Voigt equations in smooth bounded domains with homogeneous Dirichlet boundary conditions. First, we study the existence and exponential stability of strong stationary solutions to the problem. Then we show that any unstable steady state can be exponentially stabilized by using either an internal feedback control with a support large enough or a multiplicative Itô noise of sufficient intensity.

Keywords: Navier–Stokes–Voigt equations; stationary solution; stability; stabilization; internal feedback control; multiplicative Itô noise

MSC 2010: 35Q35; 35B40; 60H15


  • [1]

    C. T. Anh and P. T. Trang, Pull-back attractors for three-dimensional Navier–Stokes–Voigt equations in some unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 2, 223–251. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    C. T. Anh and P. T. Trang, Decay rate of solutions to 3D Navier–Stokes–Voigt equations in Hm spaces, Appl. Math. Lett. 61 (2016), 1–7. Web of ScienceGoogle Scholar

  • [3]

    L.-I. Anita and S. Anita, Characterization of the internal stabilizability of the diffusion equation, Nonlinear Stud. 8 (2001), no. 2, 193–202. Google Scholar

  • [4]

    V. Barbu and C. Lefter, Internal stabilizability of the Navier–Stokes equations, Systems Control Lett. 48 (2003), no. 3–4, 161–167. CrossrefGoogle Scholar

  • [5]

    V. Barbu and S. S. Sritharan, Feedback stabilization of the magneto-hydrodynamic system, Semigroups of Operators: Theory and Applications (Rio de Janeiro 2001), Optimization Software, New York (2002), 45–53. Google Scholar

  • [6]

    Y. Cao, E. M. Lunasin and E. S. Titi, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci. 4 (2006), no. 4, 823–848. CrossrefGoogle Scholar

  • [7]

    T. Caraballo, J. A. Langa and J. C. Robinson, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Discrete Contin. Dyn. Syst. 6 (2000), no. 4, 875–892. CrossrefGoogle Scholar

  • [8]

    T. Caraballo, J. A. Langa and T. Taniguchi, The exponential behaviour and stabilizability of stochastic 2D-Navier–Stokes equations, J. Differential Equations 179 (2002), no. 2, 714–737. CrossrefGoogle Scholar

  • [9]

    T. Caraballo, K. Liu and X. Mao, On stabilization of partial differential equations by noise, Nagoya Math. J. 161 (2001), 155–170. CrossrefGoogle Scholar

  • [10]

    T. Caraballo, A. M. Márquez-Durán and J. Real, The asymptotic behaviour of a stochastic 3D LANS-α model, Appl. Math. Optim. 53 (2006), no. 2, 141–161. CrossrefGoogle Scholar

  • [11]

    A. O. Çelebı, V. K. Kalantarov and M. Polat, Global attractors for 2D Navier–Stokes–Voight equations in an unbounded domain, Appl. Anal. 88 (2009), no. 3, 381–392. CrossrefWeb of ScienceGoogle Scholar

  • [12]

    P. Constantin and C. Foias, Navier–StokesEquations, Chicago Lectures in Math., University of Chicago Press, Chicago, 1988. Google Scholar

  • [13]

    M. A. Ebrahimi, M. Holst and E. Lunasin, The Navier–Stokes–Voight model for image inpainting, IMA J. Appl. Math. 78 (2013), no. 5, 869–894. Web of ScienceCrossrefGoogle Scholar

  • [14]

    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 2nd ed., SpringerMonogr. Math., Springer, New York, 2011. Web of ScienceGoogle Scholar

  • [15]

    J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier–Stokes–Voigt equations, Nonlinearity 25 (2012), no. 4, 905–930. CrossrefWeb of ScienceGoogle Scholar

  • [16]

    M. Holst, E. Lunasin and G. Tsogtgerel, Analysis of a general family of regularized Navier–Stokes and MHD models, J. Nonlinear Sci. 20 (2010), no. 5, 523–567. CrossrefWeb of ScienceGoogle Scholar

  • [17]

    V. K. Kalantarov and E. S. Titi, Global attractors and determining modes for the 3D Navier–Stokes–Voight equations, Chin. Ann. Math. Ser. B 30 (2009), no. 6, 697–714. CrossrefWeb of ScienceGoogle Scholar

  • [18]

    C. J. Niche, Decay characterization of solutions to Navier–Stokes–Voigt equations in terms of the initial datum, J. Differential Equations 260 (2016), no. 5, 4440–4453. Web of ScienceCrossrefGoogle Scholar

  • [19]

    A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers (in Russian), Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973), 98–136. Google Scholar

  • [20]

    P. A. Razafimandimby and M. Sango, On the exponential behaviour of stochastic evolution equations for non-Newtonian fluids, Appl. Anal. 91 (2012), no. 12, 2217–2233. CrossrefWeb of ScienceGoogle Scholar

  • [21]

    J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2001. Google Scholar

  • [22]

    R. Temam, Navier–Stokes Equations, revised ed., Stud. Math. Appl. 2, North-Holland, Amsterdam, 1979. Google Scholar

  • [23]

    G. Wang, Stabilization of the Boussinesq equation via internal feedback controls, Nonlinear Anal. 52 (2003), no. 2, 485–506. CrossrefGoogle Scholar

  • [24]

    G. Yue and C. Zhong, Attractors for autonomous and nonautonomous 3D Navier–Stokes–Voight equations, Discrete Contin. Dyn. Syst. Ser. B 16 (2011), no. 3, 985–1002. CrossrefWeb of ScienceGoogle Scholar

  • [25]

    C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier–Stokes–Voigt equations in 3, Appl. Math. Comput. 256 (2015), 183–191. Google Scholar

About the article

Received: 2016-10-28

Revised: 2017-05-02

Accepted: 2017-08-13

Published Online: 2018-12-05

Funding Source: National Foundation for Science and Technology Development

Award identifier / Grant number: 101.02-2015.10

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2015.10.

Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0067.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in