Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

Predual spaces of generalized grand Morrey spaces over non-doubling measure spaces

Yoshihiro Sawano
  • Corresponding author
  • Department of Mathematics, and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tetsu Shimomura
  • Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-21 | DOI: https://doi.org/10.1515/gmj-2018-0068

Abstract

The predual spaces of generalized grand Morrey spaces over non-doubling measure spaces are investigated. The case of the grand Lebesgue spaces is covered, which is also new. An example shows that the modification of Morrey spaces is essential.

Keywords: Grand Morrey spaces; non-doubling measures; predual

MSC 2010: 42B35; 26A33

References

  • [1]

    D. R. Adams and J. Xiao, Morrey spaces in harmonic analysis, Ark. Mat. 50 (2012), no. 2, 201–230. Web of ScienceCrossrefGoogle Scholar

  • [2]

    C. Capone, M. R. Formica and R. Giova, Grand Lebesgue spaces with respect to measurable functions, Nonlinear Anal. 85 (2013), 125–131. Web of ScienceCrossrefGoogle Scholar

  • [3]

    A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51 (2000), no. 2, 131–148. Google Scholar

  • [4]

    A. Fiorenza, B. Gupta and P. Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math. 188 (2008), no. 2, 123–133. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in L1, Studia Math. 127 (1998), no. 3, 223–231. Google Scholar

  • [6]

    T. Futamura, Y. Mizuta and T. Ohno, Sobolev’s theorem for Riesz potentials of functions in grand Morrey spaces of variable exponent, Banach and Function Spaces IV—ISBFS 2012, Yokohama, Yokohama (2014), 353–365. Google Scholar

  • [7]

    A. Gogatishvili and R. C. Mustafayev, New pre-dual space of Morrey space, J. Math. Anal. Appl. 397 (2013), no. 2, 678–692. Web of ScienceCrossrefGoogle Scholar

  • [8]

    L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), no. 2, 249–258. CrossrefGoogle Scholar

  • [9]

    T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal. 119 (1992), no. 2, 129–143. CrossrefGoogle Scholar

  • [10]

    T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO coefficients, J. Anal. Math. 74 (1998), 183–212. CrossrefGoogle Scholar

  • [11]

    T. Izumi, E. Sato and K. Yabuta, Remarks on a subspace of Morrey spaces, Tokyo J. Math. 37 (2014), no. 1, 185–197. Web of ScienceCrossrefGoogle Scholar

  • [12]

    V. Kokilashvili, A. Meskhi and H. Rafeiro, Riesz type potential operators in generalized grand Morrey spaces, Georgian Math. J. 20 (2013), no. 1, 43–64. Web of ScienceGoogle Scholar

  • [13]

    V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral Operators in Non-standard Function Spaces. Vol. 2, Oper. Theory Adv. Appl. 249, Birkhäuser/Springer, Cham, 2016. Google Scholar

  • [14]

    Y. Komori, Calderón–Zygmund operators on the predual of a Morrey space, Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 2, 297–302. CrossrefGoogle Scholar

  • [15]

    A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Equ. 56 (2011), no. 10–11, 1003–1019. Web of ScienceCrossrefGoogle Scholar

  • [16]

    A. Meskhi and Y. Sawano, Density, duality and preduality in grand variable exponent Lebesgue and Morrey spaces, Mediterr. J. Math. 15 (2018), no. 3, Article ID 100. Web of ScienceGoogle Scholar

  • [17]

    C. B. Morrey, Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. CrossrefGoogle Scholar

  • [18]

    E. Nakai, Orlicz–Morrey spaces and their preduals, Banach and Function Spaces III—ISBFS 2009, Yokohama, Yokohama (2011), 187–205. Google Scholar

  • [19]

    F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. IMRN 1997 (1997), no. 15, 703–726. CrossrefGoogle Scholar

  • [20]

    F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. IMRN 1998 (1998), no. 9, 463–487. CrossrefGoogle Scholar

  • [21]

    T. Ohno and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces, Czechoslovak Math. J. 64(139) (2014), no. 1, 209–228. Web of ScienceGoogle Scholar

  • [22]

    J. Peetre, On the theory of p,λ spaces, J. Funct. Anal. 4 (1969), 71–87. Google Scholar

  • [23]

    J. Ruan and J. Chen, The Cauchy integral operator on the predual of a Morrey space, J. Inequal. Appl. 2010 (2010), Article ID 729824. Web of ScienceGoogle Scholar

  • [24]

    S. G. Samko and S. M. Umarkhadzhiev, On Iwaniec–Sbordone spaces on sets which may have infinite measure, Azerb. J. Math. 1 (2011), no. 1, 67–84. Google Scholar

  • [25]

    Y. Sawano, A note on the boundedness of discrete commutators on Morrey spaces and their preduals, J. Anal. Appl. 11 (2013), no. 1–2, 1–26. Google Scholar

  • [26]

    Y. Sawano and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents, Collect. Math. 64 (2013), no. 3, 313–350. CrossrefWeb of ScienceGoogle Scholar

  • [27]

    Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535–1544. CrossrefGoogle Scholar

  • [28]

    Y. Sawano and H. Tanaka, Predual spaces of Morrey spaces with non-doubling measures, Tokyo J. Math. 32 (2009), no. 2, 471–486. CrossrefGoogle Scholar

  • [29]

    Y. Sawano and H. Tanaka, Fatou property of predual Morrey spaces with non-doubling measures, Int. J. Appl. Math. 27 (2014), no. 3, 283–296. Google Scholar

  • [30]

    C. Sbordone, Grand Sobolev spaces and their applications to variational problems, Matematiche (Catania) 51 (1996), no. 2, 335–347. Google Scholar

  • [31]

    W. Yuan, Complex interpolation for predual spaces of Morrey-type spaces, Taiwanese J. Math. 18 (2014), no. 5, 1527–1548. Web of ScienceCrossrefGoogle Scholar

  • [32]

    C. T. Zorko, Morrey space, Proc. Amer. Math. Soc. 98 (1986), no. 4, 586–592. CrossrefGoogle Scholar

About the article

Received: 2016-06-06

Revised: 2017-07-14

Accepted: 2017-07-31

Published Online: 2018-11-21


Funding Source: Japan Society for the Promotion of Science London

Award identifier / Grant number: 16K05209

Funding Source: Japan Society for the Promotion of Science

Award identifier / Grant number: 15K04929

The first author is supported by Grant-in-Aid for Scientific Research (C) (16K05209). The second author is supported by Grant-in-Aid for Scientific Research (C) (15K04929).


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0068.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in