[1]

İ. Çanak and Ü. Totur,
A Tauberian theorem for Cesàro summability of integrals,
Appl. Math. Lett. 24 (2011), no. 3, 391–395.
CrossrefGoogle Scholar

[2]

İ. Çanak and Ü. Totur,
Tauberian conditions for Cesàro summability of integrals,
Appl. Math. Lett. 24 (2011), no. 6, 891–896.
CrossrefGoogle Scholar

[3]

İ. Çanak and Ü. Totur,
Alternative proofs of some classical type Tauberian theorems for the Cesàro summability of integrals,
Math. Comput. Modelling 55 (2012), no. 3–4, 1558–1561.
CrossrefGoogle Scholar

[4]

İ. Çanak and Ü. Totur,
The $(C,\alpha )$ integrability of functions by weighted mean methods,
Filomat 26 (2012), no. 6, 1209–1214.
Web of ScienceGoogle Scholar

[5]

M. Dik,
Tauberian theorems for sequences with moderately oscillatory control modulo,
Math. Morav. 5 (2001), 57–94.
Google Scholar

[6]

Y. Erdem and İ. Çanak,
A Tauberian theorem for $(A)(C,\alpha )$ summability,
Comput. Math. Appl. 60 (2010), no. 11, 2920–2925.
Web of ScienceGoogle Scholar

[7]

Y. Erdem and İ. Çanak,
A Tauberian theorem for the product of Abel and Cesàro summability methods,
Georgian Math. J. 23 (2016), no. 3, 343–350.
Google Scholar

[8]

R. Estrada and R. P. Kanwal,
A distributional Approach to Asymptotics. Theory and Applications, 2nd ed.,
Birkhäuser Adv. Texts Basler Lehrbücher,
Birkhäuser, Boston, 2002.
Google Scholar

[9]

R. Estrada and J. Vindas,
On Tauber’s second Tauberian theorem,
Tohoku Math. J. (2) 64 (2012), no. 4, 539–560.
CrossrefWeb of ScienceGoogle Scholar

[10]

G. H. Hardy,
Divergent Series, 2nd ed.,
Chelsea, New York, 1991.
Google Scholar

[11]

J. Korevaar,
Tauberian Theory. A Century of Developments,
Grundlehren Math. Wiss. 329,
Springer, Berlin, 2004.
Google Scholar

[12]

F. Móricz and Z. Németh,
Tauberian conditions under which convergence of integrals follows from summability $(C,1)$ over ${\mathbf{R}}_{+}$,
Anal. Math. 26 (2000), no. 1, 53–61.
Google Scholar

[13]

R. Schmidt,
Über divergente Folgen und lineare Mittelbildungen,
Math. Z. 22 (1925), no. 1, 89–152.
CrossrefGoogle Scholar

[14]

A. Tauber,
Ein Satz aus der Theorie der unendlichen Reihen,
Monatsh. Math. Phys. 8 (1897), no. 1, 273–277.
CrossrefGoogle Scholar

[15]

Ü. Totur and İ. Çanak,
On Tauberian conditions for $(C,1)$ summability of integrals,
Rev. Un. Mat. Argentina 54 (2013), no. 2, 59–65.
Google Scholar

[16]

Ü. Totur and İ. Çanak,
On the $(C,1)$ summability method of improper integrals,
Appl. Math. Comput. 219 (2013), no. 24, 11065–11070.
Web of ScienceGoogle Scholar

[17]

Ü. Totur and İ. Çanak,
Tauberian conditions for the $(C,\alpha )$ integrability of functions,
Positivity 21 (2017), no. 1, 73–83.
Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.