[1]

K. Abdaoui, F. Ammar and A. Makhlouf,
Constructions and cohomology of hom-Lie color algebras,
Comm. Algebra 43 (2015), no. 11, 4581–4612.
CrossrefGoogle Scholar

[2]

V. Abramov, R. Kerner and B. Le Roy,
Hypersymmetry: a ${Z}_{3}$-graded generalization of supersymmetry,
J. Math. Phys. 38 (1997), no. 3, 1650–1669.
Google Scholar

[3]

N. Aizawa and H. Sato,
*q*-deformation of the Virasoro algebra with central extension,
Phys. Lett. B 256 (1991), no. 2, 185–190.
CrossrefGoogle Scholar

[4]

F. Ammar, Z. Ejbehi and A. Makhlouf,
Cohomology and deformations of hom-algebras,
J. Lie Theory 21 (2011), no. 4, 813–836.
Google Scholar

[5]

F. Ammar, S. Mabrouk and A. Makhlouf,
Representations and cohomology of *n*-ary multiplicative hom-Nambu–Lie algebras,
J. Geom. Phys. 61 (2011), no. 10, 1898–1913.
CrossrefGoogle Scholar

[6]

F. Ammar and A. Makhlouf,
Hom-Lie superalgebras and hom-Lie admissible superalgebras,
J. Algebra 324 (2010), no. 7, 1513–1528.
CrossrefGoogle Scholar

[7]

A. R. Armakan and M. R. Farhangdoost,
Extensions of hom-Lie algebras in terms of cohomology,
Czechoslovak Math. J. 67(142) (2017), no. 2, 317–328.
Google Scholar

[8]

A. R. Armakan and M. R. Farhangdoost,
Geometric aspects of extensions of hom-Lie superalgebras,
Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 6, Article ID 1750085.
Google Scholar

[9]

J. Arnlind, A. Kitouni, A. Makhlouf and S. Silvestrov,
Structure and cohomology of 3-Lie algebras induced by Lie algebras,
Algebra, Geometry and Mathematical Physics,
Springer Proc. Math. Stat. 85,
Springer, Heidelberg (2014), 123–144.
Google Scholar

[10]

J. Arnlind, A. Makhlouf and S. Silvestrov,
Ternary hom-Nambu–Lie algebras induced by hom-Lie algebras,
J. Math. Phys. 51 (2010), no. 4, Article ID 043515.
Google Scholar

[11]

J. Arnlind, A. Makhlouf and S. Silvestrov,
Construction of *n*-Lie algebras and *n*-ary hom-Nambu–Lie algebras,
J. Math. Phys. 52 (2011), no. 12, Article ID 123502.
Google Scholar

[12]

Y. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky and M. V. Zaicev,
Infinite-Dimensional Lie Superalgebras,
De Gruyter Exp. Math. 7,
Walter de Gruyter, Berlin, 1992.
Google Scholar

[13]

S. Benayadi and A. Makhlouf,
Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms,
J. Geom. Phys. 76 (2014), 38–60.
CrossrefGoogle Scholar

[14]

A. J. Calderon and J. M. S. Delgado,
On the structure of split Lie color algebras,
Linear Algebra Appl. 436 (2012), no. 2, 307–315.
CrossrefGoogle Scholar

[15]

Y. Cao and L. Chen,
On split regular hom-Lie color algebras,
Colloq. Math. 146 (2017), no. 1, 143–155.
CrossrefGoogle Scholar

[16]

M. Chaichian, D. Ellinas and Z. Popowicz,
Quantum conformal algebra with central extension,
Phys. Lett. B 248 (1990), no. 1–2, 95–99.
CrossrefGoogle Scholar

[17]

M. Chaichian, A. P. Isaev, J. Lukierski, Z. Popowic and P. Prešnajder,
*q*-deformations of Virasoro algebra and conformal dimensions,
Phys. Lett. B 262 (1991), no. 1, 32–38.
CrossrefGoogle Scholar

[18]

M. Chaichian, P. Kulish and J. Lukierski,
*q*-deformed Jacobi identity, *q*-oscillators and *q*-deformed infinite-dimensional algebras,
Phys. Lett. B 237 (1990), no. 3–4, 401–406.
CrossrefGoogle Scholar

[19]

M. Chaichian, Z. Popowicz and P. Prešnajder,
*q*-Virasoro algebra and its relation to the *q*-deformed KdV system,
Phys. Lett. B 249 (1990), no. 1, 63–65.
CrossrefGoogle Scholar

[20]

X.-W. Chen, T. Petit and F. Van Oystaeyen,
Note on the cohomology of color Hopf and Lie algebras,
J. Algebra 299 (2006), no. 1, 419–442.
CrossrefGoogle Scholar

[21]

T. L. Curtright and C. K. Zachos,
Deforming maps for quantum algebras,
Phys. Lett. B 243 (1990), no. 3, 237–244.
CrossrefGoogle Scholar

[22]

E. V. Damaskinskiĭ and P. P. Kulish,
Deformed oscillators and their applications (in Russian),
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 189 (1991), no. 10, 37–74;
translation in J. Soviet Math. 62 (1992), no. 5, 2963–2986.
Google Scholar

[23]

C. Daskaloyannis,
Generalized deformed Virasoro algebras,
Modern Phys. Lett. A 7 (1992), no. 9, 809–816.
CrossrefGoogle Scholar

[24]

J. T. Hartwig, D. Larsson and S. D. Silvestrov,
Deformations of Lie algebras using σ-derivations,
J. Algebra 295 (2006), no. 2, 314–361;
first appeared as Preprints in Mathematical Sciences 2003:32, LUTFMA-5036-2003, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University, 2003.
CrossrefGoogle Scholar

[25]

L. Hellström and S. D. Silvestrov,
Commuting Elements in *q*-deformed Heisenberg Algebras,
World Scientific, River Edge, 2000.
Google Scholar

[26]

N. Hu,
*q*-Witt algebras, *q*-Lie algebras, *q*-holomorph structure and representations,
Algebra Colloq. 6 (1999), no. 1, 51–70.
Google Scholar

[27]

C. Kassel,
Cyclic homology of differential operators, the Virasoro algebra and a *q*-analogue,
Comm. Math. Phys. 146 (1992), no. 2, 343–356.
CrossrefGoogle Scholar

[28]

R. Kerner,
${Z}_{3}$-graded structures,
Spinors, twistors, Clifford algebras and quantum deformations (Sobótka Castle 1992),
Fund. Theories Phys. 52,
Kluwer Academic, Dordrecht (1993), 349–356.
Google Scholar

[29]

R. Kerner,
The cubic chessboard. Geometry and physics,
Classical Quantum Gravity 14 (1997), no. A1, A203–A225.
Google Scholar

[30]

R. Kerner,
Ternary algebraic structures and their applications in physics,
preprint (2000), https://arxiv.org/pdf/math-ph/0011023.pdf.

[31]

I. Kolář, P. W. Michor and J. Slovák,
Natural Operations in Differential Geometry,
Springer, Berlin, 1993.
Google Scholar

[32]

D. Larsson, G. Sigurdsson and S. D. Silvestrov,
Quasi-Lie deformations on the algebra $\mathbb{F}[t]/({t}^{N})$,
J. Gen. Lie Theory Appl. 2 (2008), no. 3, 201–205.
Google Scholar

[33]

D. Larsson and S. D. Silvestrov,
Graded quasi-Lie algebras,
Czechoslovak J. Phys. 55 (2005), no. 11, 1473–1478.
CrossrefGoogle Scholar

[34]

D. Larsson and S. D. Silvestrov,
Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities,
J. Algebra 288 (2005), no. 2, 321–344.
CrossrefGoogle Scholar

[35]

D. Larsson and S. D. Silvestrov,
Quasi-Lie algebras,
Noncommutative Geometry and Representation Theory in Mathematical Physics,
Contemp. Math. 391,
American Mathematical Society, Providence (2005), 241–248.
Google Scholar

[36]

D. Larsson and S. D. Silvestrov,
Quasi-deformations of $s{l}_{2}(\mathbb{F})$ using twisted derivations,
Comm. Algebra 35 (2007), no. 12, 4303–4318.
Google Scholar

[37]

P. B. A. Lecomte,
On some sequence of graded Lie algebras associated to manifolds,
Ann. Global Anal. Geom. 12 (1994), no. 2, 183–192.
CrossrefGoogle Scholar

[38]

K. Q. Liu,
Quantum central extensions,
C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 4, 135–140.
Google Scholar

[39]

K. Q. Liu,
Characterizations of the quantum Witt algebra,
Lett. Math. Phys. 24 (1992), no. 4, 257–265.
CrossrefGoogle Scholar

[40]

K. Q. Liu,
The quantum witt algebra and quantization of some modules over Witt algebra,
Ph.D. Thesis, Department of Mathematics University of Alberta, Edmonton, 1992.
Google Scholar

[41]

K. Mackenzie,
Lie Groupoids and Lie Algebroids in Differential Geometry,
London Math. Soc. Lecture Note Ser. 124,
Cambridge University, Cambridge, 1987.
Google Scholar

[42]

A. Makhlouf,
Paradigm of nonassociative hom-algebras and hom-superalgebras,
Proceedings of Jordan Structures in Algebra and Analysis Meeting,
Editorial Círculo Rojo, Almería (2010), 143–177.
Google Scholar

[43]

A. Makhlouf and S. D. Silvestrov,
Hom-algebra structures,
J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51–64.
CrossrefGoogle Scholar

[44]

A. Makhlouf and S. D. Silvestrov,
Hom-Lie admissible hom-coalgebras and hom-Hopf algebras,
Generalized Lie theory in Mathematics, Physics and Beyond,
Springer, Berlin (2009), 189–206.
Google Scholar

[45]

A. Makhlouf and S. D. Silvestrov,
Hom-algebras and hom-coalgebras,
J. Algebra Appl. 9 (2010), no. 4, 553–589.
CrossrefGoogle Scholar

[46]

A. Makhlouf and S. D. Silvestrov,
Notes on 1-parameter formal deformations of hom-associative and hom-Lie algebras,
Forum Math. 22 (2010), no. 4, 715–739.
Google Scholar

[47]

A. A. Mikhalev and A. A. Zolotykh,
Combinatorial Aspects of Lie Superalgebras,
CRC Press, Boca Raton, 1995.
Google Scholar

[48]

D. Piontkovski and S. D. Silvestrov,
Cohomology of 3-dimensional color Lie algebras,
J. Algebra 316 (2007), no. 2, 499–513.
CrossrefGoogle Scholar

[49]

L. Richard and S. D. Silvestrov,
Quasi-Lie structure of σ-derivations of $\u2102[{t}^{\pm 1}]$,
J. Algebra 319 (2008), no. 3, 1285–1304.
Google Scholar

[50]

L. Richard and S. Silvestrov,
A note on quasi-Lie and hom-Lie structures of σ-derivations of $\u2102[{z}_{1}^{\pm 1},\mathrm{\dots},{z}_{n}^{\pm 1}]$,
Generalized Lie Theory in Mathematics, Physics and Beyond,
Springer, Berlin (2009), 257–262.
Google Scholar

[51]

G. Sigurdsson and S. D. Silvestrov,
Graded quasi-Lie algebras of Witt type,
Czechoslovak J. Phys. 56 (2006), no. 10–11, 1287–1291.
CrossrefGoogle Scholar

[52]

G. Sigurdsson and S. Silvestrov,
Lie color and Hom-Lie algebras of Witt type and their central extensions,
Generalized Lie Theory in Mathematics, Physics and Beyond,
Springer, Berlin (2009), 247–255.
Google Scholar

[53]

S. Silvestrov,
Paradigm of quasi-Lie and quasi-hom-Lie algebras and quasi-deformations,
New Techniques in Hopf Algebras and Graded Ring Theory,
K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels (2007), 165–177.
Google Scholar

[54]

M. Scheunert,
Generalized Lie algebras,
J. Math. Phys. 20 (1979), no. 4, 712–720.
CrossrefGoogle Scholar

[55]

M. Scheunert,
Graded tensor calculus,
J. Math. Phys. 24 (1983), no. 11, 2658–2670.
CrossrefGoogle Scholar

[56]

M. Scheunert,
Introduction to the cohomology of Lie superalgebras and some applications,
Recent Advances in Lie theory (Vigo, 2000),
Res. Exp. Math. 25,
Heldermann, Lemgo (2002), 77–107.
Google Scholar

[57]

M. Scheunert and R. B. Zhang,
Cohomology of Lie superalgebras and their generalizations,
J. Math. Phys. 39 (1998), no. 9, 5024–5061.
CrossrefGoogle Scholar

[58]

Y. Sheng,
Representations of hom-Lie algebras,
Algebr. Represent. Theory 15 (2012), no. 6, 1081–1098.
CrossrefGoogle Scholar

[59]

Y. Sheng and C. Bai,
A new approach to hom-Lie bialgebras,
J. Algebra 399 (2014), 232–250.
CrossrefGoogle Scholar

[60]

Y. Sheng and D. Chen,
Hom-Lie 2-algebras,
J. Algebra 376 (2013), 174–195.
CrossrefGoogle Scholar

[61]

L. Vainerman and R. Kerner,
On special classes of *n*-algebras,
J. Math. Phys. 37 (1996), no. 5, 2553–2565.
CrossrefGoogle Scholar

[62]

D. Yau,
Enveloping algebras of Hom-Lie algebras,
J. Gen. Lie Theory Appl. 2 (2008), no. 2, 95–108.
CrossrefGoogle Scholar

[63]

D. Yau,
Hom-algebras and homology,
J. Lie Theory 19 (2009), no. 2, 409–421.
Google Scholar

[64]

D. Yau,
Hom-bialgebras and comodule hom-algebras,
Int. Electron. J. Algebra 8 (2010), 45–64.
Google Scholar

[65]

L. Yuan,
Hom-Lie color algebra structures,
Comm. Algebra 40 (2012), no. 2, 575–592.
CrossrefGoogle Scholar

[66]

J. Zhou, L. Chen and Y. Ma,
Generalized derivations of hom-Lie superalgebras,
Acta Math. Sinica (Chin. Ser.) 58 (2014), 3737–3751.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.