Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Wissenschaftlicher Beirat: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
Alle Formate und Preise
Weitere Optionen …
Ahead of print

Hefte

On convergence of sequences of functions possessing closed graphs

Tomasz NatkaniecORCID iD: https://orcid.org/0000-0002-6023-9414 / Waldemar SiegORCID iD: https://orcid.org/0000-0001-6904-7606
Online erschienen: 14.08.2019 | DOI: https://doi.org/10.1515/gmj-2019-2036

Abstract

In the first part of the paper we study the sets of boundedness and of convergence and divergence to infinity of sequences of real closed-graph functions. Generalization on ideal convergence of such sequences is discussed. Limits and ideal-limits of sequences of functions with closed graphs are considered in the last part of the article.

Keywords: Ideal convergence; functions with closed graphs

MSC 2010: 40A30; 40A35; 26A21; 54C30

Dedicated to Professor Alexander Kharazishvili on his 70th birthday

References

  • [1]

    J. Borsík, J. Doboš and M. Repický, Sums of quasicontinuous functions with closed graphs, Real Anal. Exchange 25 (1999/2000), no. 2, 679–690. Google Scholar

  • [2]

    D. Borzestowski and I. Recław, On Lunina’s 7-tuples for ideal convergence, Real Anal. Exchange 35 (2010), no. 2, 479–485. CrossrefGoogle Scholar

  • [3]

    J. Brown, Overview of the course MH687 Fall 1997, a manuscript.

  • [4]

    G. Debs and J. Saint Raymond, Filter descriptive classes of Borel functions, Fund. Math. 204 (2009), no. 3, 189–213. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    R. Filipów, T. Natkaniec and P. Szuca, Ideal convergence, Traditional and Present-day Topics in Real Analysis, University of Łódź, Łódź (2013), 69–91. Google Scholar

  • [6]

    R. Filipów and P. Szuca, Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl. 391 (2012), no. 1, 1–9. Web of ScienceCrossrefGoogle Scholar

  • [7]

    R. V. Fuller, Relations among continuous and various non-continuous functions, Pacific J. Math. 25 (1968), 495–509. CrossrefGoogle Scholar

  • [8]

    Z. Grande, On pointwise, discrete and transfinite limits of sequences of closed graph functions, Real Anal. Exchange 26 (2000/2001), no. 2, 933–941. Google Scholar

  • [9]

    H. Hahn, Uber die Menge der Konvergenzpunkte einer Funktionfolge, Arch. Math. Phys. 28 (1919), 34–45. Google Scholar

  • [10]

    A. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995. Google Scholar

  • [11]

    S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197. CrossrefGoogle Scholar

  • [12]

    I. P. Kornfel’d, Sets of convergence and divergence of functional sequences (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 35 (1963), no. 4, 79–88. Google Scholar

  • [13]

    P. Kostyrko, A note on the functions with closed graphs, Časopis Pěst. Mat. 94 (1969), 202–205. Google Scholar

  • [14]

    M. Laczkovich and I. Recław, Ideal limits of sequences of continuous functions, Fund. Math. 203 (2009), no. 1, 39–46. Web of ScienceCrossrefGoogle Scholar

  • [15]

    C. Laflamme, Filter games and combinatorial properties of strategies, Set Theory (Boise 1992-1994), Contemp. Math. 192, American Mathematical Society, Providence (1996), 51–67. Google Scholar

  • [16]

    J. S. Lipiński, Convergence to infinity of a sequence of continuous functions (in Russian), Dokl. Akad. Nauk SSSR 140 (1961), 752–754. Google Scholar

  • [17]

    J. S. Lipiński, Sets of points of convergence to infinity of a sequence of continuous functions (in Russian), Fund. Math. 51 (1962/1963), 35–43. Google Scholar

  • [18]

    M. A. Lunina, Sets of convergence and divergence of sequences of real-valued continuous functions on a metric space (in Russian), Mat. Zametki 17 (1975), 205–217; translation in Math. Notes 17 (1975), no. 2, 120-126. Google Scholar

  • [19]

    K. Mazur, Fσ-ideals and ω1ω1*-gaps in the Boolean algebras P(ω)/I, Fund. Math. 138 (1991), no. 2, 103–111. Google Scholar

  • [20]

    T. Natkaniec and J. Wesołowska, Sets of ideal convergence of sequences of quasi-continuous functions, J. Math. Anal. Appl. 423 (2015), no. 2, 924–939. Web of ScienceCrossrefGoogle Scholar

  • [21]

    T. Poreda and W. Poreda, On the sums of two quasi-continuous functions with closed graphs, Real Anal. Exchange 35 (2010), no. 2, 413–422. CrossrefGoogle Scholar

  • [22]

    W. Sieg, Functions represented as sums of two quasicontinuous functions with a closed graph, J. Math. Anal. Appl. 361 (2010), no. 2, 558–565. CrossrefWeb of ScienceGoogle Scholar

  • [23]

    W. Sierpiński, Sur l’ensemble des points de convergence d’une suite de fonctions continues, Fund. Math. 2 (1921), 41–49. CrossrefGoogle Scholar

Artikelinformationen

Erhalten: 18.07.2018

Angenommen: 22.01.2019

Online erschienen: 14.08.2019


Quellenangabe: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2019-2036.

Zitat exportieren

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Kommentare (0)