Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

On absolutely Baire nonmeasurable functions

Piotr Zakrzewski
Published Online: 2019-09-03 | DOI: https://doi.org/10.1515/gmj-2019-2044

Abstract

We shall show that under Martin’s axiom, there exist absolutely Baire nonmeasurable additive functions. This provides a Baire category counterpart of an analogous measure-theoretic result of A. B. Kharazishvili.

Keywords: Baire category; Baire space; Baire nonmeasurable function; universally meager set,additive function

MSC 2010: 03E20; 54E52; 28A05

Dedicated to Professor Alexander Kharazishvili on the occasion of his 70th birthday

References

  • [1]

    D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. (Rozprawy Mat.) 260 (1987), 1–116. Google Scholar

  • [2]

    E. Grzegorek, Always of the first category sets, Rend. Circ. Mat. Palermo (2) Suppl. 6 (1984), 139–147. Google Scholar

  • [3]

    E. Grzegorek, Always of the first category sets. II, Rend. Circ. Mat. Palermo (2) Suppl. 10 (1985), 43–48. Google Scholar

  • [4]

    A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995. Google Scholar

  • [5]

    A. B. Kharazishvili, Strange Functions in Real Analysis, Monogr. Textb. Pure Appl. Math. 229, Marcel Dekker, New York, 2000. Google Scholar

  • [6]

    A. B. Kharazishvili, On absolutely nonmeasurable additive functions, Georgian Math. J. 11 (2004), no. 2, 301–306. Google Scholar

  • [7]

    A. B. Kharazishvili, On additive absolutely nonmeasurable Sierpiński–Zygmund functions, Real Anal. Exchange 31 (2005/06), no. 2, 553–560. Google Scholar

  • [8]

    A. B. Kharazishvili and A. Kirtadze, On the measurability of functions with respect to certain classes of measures, Georgian Math. J. 11 (2004), no. 3, 489–494. Google Scholar

  • [9]

    A. W. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), no. 3, 575–584. CrossrefGoogle Scholar

  • [10]

    A. W. Miller, Special subsets of the real line, Handbook of Set-theoretic Topology, North-Holland, Amsterdam (1984), 201–233. Google Scholar

  • [11]

    S. Plewik, Towers are universally measure zero and always of first category, Proc. Amer. Math. Soc. 119 (1993), no. 3, 865–868. CrossrefGoogle Scholar

  • [12]

    I. Recław, Some additive properties of special sets of reals, Colloq. Math. 62 (1991), no. 2, 221–226. CrossrefGoogle Scholar

  • [13]

    W. Sierpiński and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 1 (1923), no. 4, 316–318. Google Scholar

  • [14]

    V. V. Tkachuk, Cp-Theory Problem Book. Special Features of Function Spaces, Problem Books in Math., Springer, Cham, 2014. Google Scholar

  • [15]

    J. von Neumann, Ein System algebraisch unabhängiger zahlen, Math. Ann. 99 (1928), no. 1, 134–141. CrossrefGoogle Scholar

  • [16]

    P. Zakrzewski, Universally meager sets, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1793–1798. CrossrefGoogle Scholar

  • [17]

    P. Zakrzewski, Universally meager sets. II, Topology Appl. 155 (2008), no. 13, 1445–1449. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-10-31

Accepted: 2018-11-12

Published Online: 2019-09-03


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2019-2044.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in