Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Ahead of print

Issues

Sharp explicit oscillation conditions for difference equations with several delays

Kirill M. Chudinov
Published Online: 2019-10-15 | DOI: https://doi.org/10.1515/gmj-2019-2060

Abstract

We consider explicit sufficient conditions for all solutions of a first-order linear difference equation with several variable delays and non-negative coefficients to be oscillatory. The conditions have the form of inequalities bounding below the upper and lower limits of the sums of coefficients over a subset of the discrete semiaxis. Our main results are oscillation tests based on a new principle for composing the estimated sums of coefficients. We also give some results in the form of examples, including a counterexample to a wrong oscillation test cited in several recent papers.

Keywords: Delay difference equation; oscillation; effective test; several delays

MSC 2010: 39A21; 34K11

References

  • [1]

    L. Berezansky and E. Braverman, On existence of positive solutions for linear difference equations with several delays, Adv. Dyn. Syst. Appl. 1 (2006), no. 1, 29–47. Google Scholar

  • [2]

    E. Braverman, G. E. Chatzarakis and I. P. Stavroulakis, Iterative oscillation tests for difference equations with several non-monotone arguments, J. Difference Equ. Appl. 21 (2015), no. 9, 854–874. Web of ScienceCrossrefGoogle Scholar

  • [3]

    E. Braverman and B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput. 218 (2011), no. 7, 3880–3887. Web of ScienceGoogle Scholar

  • [4]

    G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (2008), no. 4, 994–1005. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    G. E. Chatzarakis, S. Pinelas and I. P. Stavroulakis, Oscillations of difference equations with several deviated arguments, Aequationes Math. 88 (2014), no. 1–2, 105–123. Web of ScienceCrossrefGoogle Scholar

  • [6]

    G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Optimal oscillation criteria for first order difference equations with delay argument, Pacific J. Math. 235 (2008), no. 1, 15–33. CrossrefWeb of ScienceGoogle Scholar

  • [7]

    K. Chudinov, Note on oscillation conditions for first-order delay differential equations, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 2. Web of ScienceGoogle Scholar

  • [8]

    Y. I. Domshlak, A discrete analogue of the Sturm comparison theorem for nonsymmetric equations (in Russian), Akad. Nauk Azerbaidzhan. SSR Dokl. 37 (1981), no. 10, 12–15. Google Scholar

  • [9]

    Y. Domshlak, Oscillation properties of discrete difference inequalities and equations: The new approach, Funct. Differ. Equ. 1 (1993), 60–82. Google Scholar

  • [10]

    L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations 2 (1989), no. 3, 300–309. Google Scholar

  • [11]

    M. K. Grammatikopoulos, R. Koplatadze and I. P. Stavroulakis, On the oscillation of solutions of first order differential equations with retarded arguments, Georgian Math. J. 10 (2003), no. 1, 63–76. CrossrefGoogle Scholar

  • [12]

    R. Koplatadze and S. Pinelas, Oscillation criteria for first-order linear difference equation with several delay arguments, Nelīnīĭnī Koliv. 17 (2014), no. 2, 248–267; translation in J. Math. Sci. (N.Y.) 208 (2015), no. 5, 571–592. Google Scholar

  • [13]

    R. G. Koplatadze and T. A. Chanturiya, Oscillating and monotone solutions of first-order differential equations with deviating argument (in Russian), Differ. Uravn. 18 (1982), no. 8, 1463–1465. Google Scholar

  • [14]

    G. Ladas, Sharp conditions for oscillations caused by delays, Appl. Anal. 9 (1979), no. 2, 93–98. CrossrefGoogle Scholar

  • [15]

    G. Ladas, V. Lakshmikantham and J. S. Papadakis, Oscillations of higher-order retarded differential equations generated by the retarded argument, Delay and Functional Differential Equations and Their Applications, Academic Press, New York (1972), 219–231. Google Scholar

  • [16]

    G. Ladas, C. G. Philos and Y. G. Sficas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation 2 (1989), no. 2, 101–111. CrossrefGoogle Scholar

  • [17]

    B. Li, Oscillation of first order delay differential equations, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3729–3737. CrossrefGoogle Scholar

  • [18]

    A. D. Myschkis, Lineare Differentialgleichungen mit Nacheilendem Argument, Deutscher Verlag der Wissenschaften, Berlin, 1955. Google Scholar

  • [19]

    A. D. Myshkis, Linear Differential Equations with Retarded Argument (in Russian), 2nd ed., “Nauka”, Moscow, 1972. Google Scholar

  • [20]

    A. D. Myškis, On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument (in Russian), Mat. Sbornik N.S. 28(70) (1951), 641–658. Google Scholar

  • [21]

    X. H. Tang and J. S. Yu, Oscillation of delay difference equation, Comput. Math. Appl. 37 (1999), no. 7, 11–20. Web of ScienceCrossrefGoogle Scholar

  • [22]

    X. H. Tang and R. Y. Zhang, New oscillation criteria for delay difference equations, Comput. Math. Appl. 42 (2001), no. 10–11, 1319–1330. CrossrefGoogle Scholar

  • [23]

    M. I. Tramov, Conditions for the oscillation of the solutions of first order differential equations with retarded argument (in Russian), Izv. Vysš. Učebn. Zaved. Matematika 1975 (1975), no. 3(154), 92–96. Google Scholar

  • [24]

    B. G. Zhang and C. J. Tian, Nonexistence and existence of positive solutions for difference equations with unbounded delay, Comput. Math. Appl. 36 (1998), no. 1, 1–8. CrossrefGoogle Scholar

About the article

Received: 2017-09-11

Revised: 2018-01-05

Accepted: 2018-05-29

Published Online: 2019-10-15


Funding Source: Ministry of Education and Science of the Russian Federation

Award identifier / Grant number: 1.5336.2017/8.9

Funding Source: Russian Foundation for Basic Research

Award identifier / Grant number: 18-01-00928

The research is performed within the basic part of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project 1.5336.2017/8.9), and is supported by the Russian Foundation for Basic Research (project 18-01-00928).


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2019-2060.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in