Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Green Processing and Synthesis

Editor-in-Chief: Hessel, Volker

Editorial Board Member: Akay, Galip / Arends, Isabel / Cann, Michael C. / Cheng, Yi / Cravotto, Giancarlo / Gruber-Wölfler, Heidrun / Kralisch, Dana / D. P. Nigam, Krishna / Saha, Basudeb / Serra, Christophe A. / Zhang, Wei

6 Issues per year


IMPACT FACTOR 2016: 0.782

CiteScore 2016: 0.90

SCImago Journal Rank (SJR) 2015: 0.344
Source Normalized Impact per Paper (SNIP) 2015: 0.402

Online
ISSN
2191-9550
See all formats and pricing
More options …
Volume 2, Issue 4 (Mar 2013)

Issues

Microwave heating and conventionally-heated continuous-flow processing as tools for performing cleaner palladium-catalyzed decarboxylative couplings using oxygen as the oxidant – a proof of principle study

DiAndra M. Rudzinski
  • Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicholas E. Leadbeater
  • Corresponding author
  • Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-27 | DOI: https://doi.org/10.1515/gps-2013-0043

Abstract

A microwave unit interfaced with a gas-loading accessory is used as a tool for facilitating the palladium-catalyzed decarboxylative Heck reaction of 2,6-dimethoxybenzoic acid and methyl acrylate, using molecular oxygen as the oxidant. The reaction is complete in less time and at a lower catalyst loading than when using conventional approaches. The reaction is scaled up using continuous-flow processing, employing a reactor in which both gas input and heating can be performed simultaneously. An 86% isolated product yield is obtained. This proof-of-principle study paves the way for the technology to be used in other cases of these increasingly popular decarboxylative coupling reactions.

Keywords: decarboxylative coupling; flow chemistry; microwave heating

References

  • [1]

    Molnár Á, Ed., Palladium-Catalyzed Coupling Reactions, Wiley-VCH: Weinheim, 2013.Google Scholar

  • [2]

    Magano J, Dunetz, JR, Eds., Transition Metal-Catalyzed Couplings in Process Chemistry: Case Studies from the Pharmaceutical Industry, Wiley-VCH: Weinheim, 2013.Google Scholar

  • [3]

    Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012, 51, 5062–5085.Google Scholar

  • [4]

    Sheldon RA, Arends I, Hanefeld U, Eds., Green Chemistry and Catalysis, Wiley-VCH: Weinheim, 2007.Google Scholar

  • [5]

    Cornella J, Larrosa I. Synthesis 2012, 44, 653–676.Google Scholar

  • [6]

    Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011, 40, 5030–5048.PubMedGoogle Scholar

  • [7]

    Li X, Yang F, Wu Y. J. Org. Chem. 2013, 78, 4543–4550.Google Scholar

  • [8]

    Jafarpour F, Zarei S, Oli MBA, Jalalimanesh N, Rahiminejadan S. J. Org. Chem. 2013, 78, 2957–2964.Google Scholar

  • [9]

    Reddy V, Srinivas P, Annapurna M, Bhargava S, Wagler J, Mirzadeh N, Kantam ML. Adv. Synth. Catal. 2013, 355, 705–710.Google Scholar

  • [10]

    Song B, Knauber T, Goossen LJ. Angew. Chem. Int. Ed. 2013, 52, 2954–2958.Google Scholar

  • [11]

    Shi L, Jia W, Li X, Jiao N. Tetrahedron Lett. 2013, 54, 1951–1955.Google Scholar

  • [12]

    Zhao HQ, Wei Y, Xu J, Kan JA, Su WP, Hong MC. J. Org. Chem. 2013, 76, 882–893.Google Scholar

  • [13]

    Cornella J, Lahlali H, Larrosa I. Chem. Commun. 2010, 46, 8276–8278.Google Scholar

  • [14]

    Goossen LJ, Linder C, Rodriguez N, Lange CC, Fromm A. Chem. Commun. 2009, 7173–7175.Google Scholar

  • [15]

    Cornella J, Sanchez C, Banawa D, Larrosa, I. Chem. Commun. 2009, 7176–7178.Google Scholar

  • [16]

    Lu P, Sanchez C, Cornella J, Larrosa I. Org. Lett. 2009, 11, 5710–5713.PubMedGoogle Scholar

  • [17]

    Cornella J, Lu P, Larrosa I. Org. Lett. 2009, 11, 5506–5509.PubMedGoogle Scholar

  • [18]

    Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002, 124, 11250–11251.Google Scholar

  • [19]

    Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005, 127, 10323–10333.Google Scholar

  • [20]

    Hu P, Kan J, Su W, Hong M. Org. Lett. 2009, 11, 2341–2344.PubMedGoogle Scholar

  • [21]

    Fu Z, Huang S, Su W, Hong M. Org. Lett., 2010, 12, 4992–4995.PubMedGoogle Scholar

  • [22]

    de la Hoz A, Loupy A, Eds., Microwaves in Organic Synthesis, 3rd ed., Wiley-VCH: Weinheim, 2012.Google Scholar

  • [23]

    Kappe CO, Stadler A, Dallinger D. Microwaves in Organic and Medicinal Chemistry, 2nd ed., Wiley-VCH: Weinheim, 2012.Google Scholar

  • [24]

    Leadbeater NE, Ed., Microwave Heating as a Tool for Sustainable Chemistry, CRC Press: Boca Raton, FL, 2010.Google Scholar

  • [25]

    Wiles C, Watts P. Micro Reaction Technology in Organic Synthesis, CRC Press: Boca Raton, FL, 2011.Google Scholar

  • [26]

    Luis SV, Garcia-Verdugo E, Eds., Chemical Reactions and Processes under Flow Conditions, Royal Society of Chemistry: Cambridge, UK, 2010.Google Scholar

  • [27]

    Voutchkova A, Coplin A, Leadbeater NE, Crabtree RH. Chem. Commun. 2008, 6312–6314.Google Scholar

  • [28]

    Goossen LJ, Zimmermann B, Linder C, Rodriguez N, Lange PP, Hartung J. Adv. Synth. Catal. 2009, 351, 2267–2674.Google Scholar

  • [29]

    Goossen LJ, Manjolinho F, Khan BA, Rodriguez N. J. Org. Chem. 2009, 74, 2620–2623.Google Scholar

  • [30]

    Forgione P, Brochu M-C, St-Onge M, Thesen KH, Bailey MD, Bilodeau F. J. Am. Chem. Soc. 2006, 128, 11350–11351.Google Scholar

  • [31]

    Stolle A, Scholz P, Ondruschka B. In: Microwaves in Organic Synthesis, 3rd ed., de la Hoz A, Loupy A, Eds., Wiley-VCH: Weinheim, 2012, Vol. 2, ch. 11, pp. 487–524.Google Scholar

  • [32]

    Petricci E, Taddei M. Chem. Today 2008, 26, 18–22.Google Scholar

  • [33]

    Kormos CM, Leadbeater NE. Synlett 2007, 2006–2010.Google Scholar

  • [34]

    Vanier GS. Synlett 2007, 131–135.Google Scholar

  • [35]

    Iannelli M, Bergamelli F, Kormos CM, Paravisi S, Leadbeater NE. Org. Process Res. Dev. 2009, 13, 634–637.Google Scholar

  • [36]

    Bowman MD, Leadbeater NE, Barnard TM. Tetrahedron Lett. 2008, 49, 195–198.Google Scholar

  • [37]

    Lange PP, Goossen LJ, Podmore P, Underwood T, Sciammetta N. Chem. Commun. 2011, 47, 3628–3630.Google Scholar

  • [38]

    Noël T, Buchwald SL. Chem. Soc. Rev. 2011, 40, 5010–5029.PubMedGoogle Scholar

  • [39]

    Irfan M, Glasnov TN, Kappe CO. ChemSusChem 2011, 4, 300–316.PubMedGoogle Scholar

  • [40]

    Irfan M, Glasnov TN, Kappe CO. Org. Lett. 2011, 13, 984–987.PubMedGoogle Scholar

  • [41]

    Nobis M, Roberge DM. Chem. Today 2011, 29, 56–58.Google Scholar

  • [42]

    Ye X, Johnson MD, Diao T, Yates MH, Stahl SS. Green Chem. 2010, 12, 1180–1186.PubMedGoogle Scholar

  • [43]

    Zope BN, Davis RJ. Top. Catal. 2009, 52, 269–277.Google Scholar

  • [44]

    Lapkin AA, Bozkaya B, Plucinski PK. Ind. Eng. Chem. Res. 2006, 45, 2220–2228.Google Scholar

  • [45]

    Miller PW, Jennings LE, deMello AJ, Gee AD, Long NJ, Vilar R. Adv. Synth. Catal. 2009, 351, 3260–3268.Google Scholar

  • [46]

    Csajági C, Borcsek B, Niesz K, Kovács I, Székelyhidi Z, Bajkó Z, Ürge L, Darvas F. Org. Lett. 2008, 10, 1589–1592.PubMedGoogle Scholar

  • [47]

    Murphy ER, Martinelli JR, Zaborenko N, Buchwald SL, Jensen KF. Angew. Chem. Int. Ed. 2007, 46, 1734–1737.Google Scholar

  • [48]

    Jahnisch K, Baerns M, Hessel V, Ehrfeld W, Haverkamp V, Lowe H, Wille C, Guber A. J. Fluorine Chem. 2000, 105, 117–128.Google Scholar

  • [49]

    McPake CB, Murray CB, Sandford G. Tetrahedron Lett. 2009, 50, 1674–1676.Google Scholar

  • [50]

    O’Brien M, Baxendale IR, Ley SV. Org. Lett. 2010, 12, 1596–1598.Google Scholar

  • [51]

    Browne DL, O’Brien M, Koos P, Cranwell PB, Polyzos A, Ley SV. Synlett 2012, 1402–1406.Google Scholar

  • [52]

    Cranwell PB, O’Brien M, Browne DL, Koos P, Polyzos A, Pena-Lopez M, Ley SV. Org. Biomol. Chem. 2012, 10, 5774–5779.PubMedGoogle Scholar

  • [53]

    Newton S, Ley SV, Arce EC, Grainger DM. Adv. Synth. Catal. 2012, 354, 1805–1812.Google Scholar

  • [54]

    Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV. Angew. Chem. Int. Ed. 2011, 50, 1190–1193.Google Scholar

  • [55]

    Bourne SL, Koos P, O’Brien M, Martin B, Schenkel B, Baxendale IR, Ley SV. Synlett 2011, 2643–2647.Google Scholar

  • [56]

    O’Brien M, Taylor N, Polyzos A, Baxendale IR, Ley SV. Chem. Sci. 2011, 2, 1250–1257.Google Scholar

  • [57]

    Mercadante MA, Leadbeater NE. Green Process. Synth. 2012, 1, 499–507.Google Scholar

  • [58]

    Mercadante MA, Leadbeater NE. Org. Biomol. Chem. 2011, 9, 6575–6578.PubMedGoogle Scholar

  • [59]

    Mercadante MA, Kelly CB, Lee CX, Leadbeater NE. Org. Process Res. Dev. 2012, 16, 1064–1068.Google Scholar

About the article

DiAndra M. Rudzinski

DiAndra M. Rudzinski earned a BS in Chemistry in 2010 at Niagara University in New York State, where she contributed to three peer-reviewed articles. In 2013, under the advisement of Dr. Nicholas E. Leadbeater, she received a Research Master’s Degree in synthetic organic chemistry, from the University of Connecticut. Her research was focused on new organofluorine chemistry, including the formation of trifluoromethyl ketones from Weinreb amide precursors. She also explored the use of microwave and continuous-flow technologies as tools for cleaner and greener metal catalyzed-cyanation and decarboxylative Heck reactions. After an internship at Boehringer-Ingelheim (Ridgefield, CT), she accepted a position at CheminPharma (Farmington, CT) where she is currently employed as a medicinal chemist.

Nicholas E. Leadbeater

Dr. Nicholas E. Leadbeater is currently an Associate Professor at the University of Connecticut in the USA. The overarching theme of his research group is the development of new methods for synthetic chemistry and the use of new technology in both research chemistry and in the undergraduate teaching laboratory. The group’s current hot topics are clean, green oxidation methods, the selective incorporation of fluorine into organic molecules, and the application of flow processing in synthetic chemistry.


Corresponding author: Nicholas E. Leadbeater, Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA


Received: 2013-05-30

Accepted: 2013-06-28

Published Online: 2013-07-27

Published in Print: 2013-03-01


Citation Information: Green Processing and Synthesis, ISSN (Online) 2191-9550, ISSN (Print) 2191-9542, DOI: https://doi.org/10.1515/gps-2013-0043.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in