Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Green Processing and Synthesis

Editor-in-Chief: Hessel, Volker

Editorial Board Member: Akay, Galip / Arends, Isabel / Cann, Michael C. / Cheng, Yi / Cravotto, Giancarlo / Gruber-Wölfler, Heidrun / Kralisch, Dana / D. P. Nigam, Krishna / Saha, Basudeb / Serra, Christophe A. / Zhang, Wei

6 Issues per year


IMPACT FACTOR 2016: 0.782

CiteScore 2016: 0.90

SCImago Journal Rank (SJR) 2015: 0.344
Source Normalized Impact per Paper (SNIP) 2015: 0.402

Online
ISSN
2191-9550
See all formats and pricing
In This Section
Volume 2, Issue 4 (Mar 2013)

Issues

Microwave heating and conventionally-heated continuous-flow processing as tools for performing cleaner palladium-catalyzed decarboxylative couplings using oxygen as the oxidant – a proof of principle study

DiAndra M. Rudzinski
  • Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA
/ Nicholas E. Leadbeater
  • Corresponding author
  • Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA
  • Email:
Published Online: 2013-07-27 | DOI: https://doi.org/10.1515/gps-2013-0043

Abstract

A microwave unit interfaced with a gas-loading accessory is used as a tool for facilitating the palladium-catalyzed decarboxylative Heck reaction of 2,6-dimethoxybenzoic acid and methyl acrylate, using molecular oxygen as the oxidant. The reaction is complete in less time and at a lower catalyst loading than when using conventional approaches. The reaction is scaled up using continuous-flow processing, employing a reactor in which both gas input and heating can be performed simultaneously. An 86% isolated product yield is obtained. This proof-of-principle study paves the way for the technology to be used in other cases of these increasingly popular decarboxylative coupling reactions.

Keywords: decarboxylative coupling; flow chemistry; microwave heating

References

  • [1]

    Molnár Á, Ed., Palladium-Catalyzed Coupling Reactions, Wiley-VCH: Weinheim, 2013.

  • [2]

    Magano J, Dunetz, JR, Eds., Transition Metal-Catalyzed Couplings in Process Chemistry: Case Studies from the Pharmaceutical Industry, Wiley-VCH: Weinheim, 2013.

  • [3]

    Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012, 51, 5062–5085.

  • [4]

    Sheldon RA, Arends I, Hanefeld U, Eds., Green Chemistry and Catalysis, Wiley-VCH: Weinheim, 2007.

  • [5]

    Cornella J, Larrosa I. Synthesis 2012, 44, 653–676.

  • [6]

    Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011, 40, 5030–5048. [PubMed]

  • [7]

    Li X, Yang F, Wu Y. J. Org. Chem. 2013, 78, 4543–4550.

  • [8]

    Jafarpour F, Zarei S, Oli MBA, Jalalimanesh N, Rahiminejadan S. J. Org. Chem. 2013, 78, 2957–2964.

  • [9]

    Reddy V, Srinivas P, Annapurna M, Bhargava S, Wagler J, Mirzadeh N, Kantam ML. Adv. Synth. Catal. 2013, 355, 705–710.

  • [10]

    Song B, Knauber T, Goossen LJ. Angew. Chem. Int. Ed. 2013, 52, 2954–2958.

  • [11]

    Shi L, Jia W, Li X, Jiao N. Tetrahedron Lett. 2013, 54, 1951–1955.

  • [12]

    Zhao HQ, Wei Y, Xu J, Kan JA, Su WP, Hong MC. J. Org. Chem. 2013, 76, 882–893.

  • [13]

    Cornella J, Lahlali H, Larrosa I. Chem. Commun. 2010, 46, 8276–8278.

  • [14]

    Goossen LJ, Linder C, Rodriguez N, Lange CC, Fromm A. Chem. Commun. 2009, 7173–7175.

  • [15]

    Cornella J, Sanchez C, Banawa D, Larrosa, I. Chem. Commun. 2009, 7176–7178.

  • [16]

    Lu P, Sanchez C, Cornella J, Larrosa I. Org. Lett. 2009, 11, 5710–5713. [PubMed]

  • [17]

    Cornella J, Lu P, Larrosa I. Org. Lett. 2009, 11, 5506–5509. [PubMed]

  • [18]

    Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002, 124, 11250–11251.

  • [19]

    Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005, 127, 10323–10333.

  • [20]

    Hu P, Kan J, Su W, Hong M. Org. Lett. 2009, 11, 2341–2344. [PubMed]

  • [21]

    Fu Z, Huang S, Su W, Hong M. Org. Lett., 2010, 12, 4992–4995. [PubMed]

  • [22]

    de la Hoz A, Loupy A, Eds., Microwaves in Organic Synthesis, 3rd ed., Wiley-VCH: Weinheim, 2012.

  • [23]

    Kappe CO, Stadler A, Dallinger D. Microwaves in Organic and Medicinal Chemistry, 2nd ed., Wiley-VCH: Weinheim, 2012.

  • [24]

    Leadbeater NE, Ed., Microwave Heating as a Tool for Sustainable Chemistry, CRC Press: Boca Raton, FL, 2010.

  • [25]

    Wiles C, Watts P. Micro Reaction Technology in Organic Synthesis, CRC Press: Boca Raton, FL, 2011.

  • [26]

    Luis SV, Garcia-Verdugo E, Eds., Chemical Reactions and Processes under Flow Conditions, Royal Society of Chemistry: Cambridge, UK, 2010.

  • [27]

    Voutchkova A, Coplin A, Leadbeater NE, Crabtree RH. Chem. Commun. 2008, 6312–6314.

  • [28]

    Goossen LJ, Zimmermann B, Linder C, Rodriguez N, Lange PP, Hartung J. Adv. Synth. Catal. 2009, 351, 2267–2674.

  • [29]

    Goossen LJ, Manjolinho F, Khan BA, Rodriguez N. J. Org. Chem. 2009, 74, 2620–2623.

  • [30]

    Forgione P, Brochu M-C, St-Onge M, Thesen KH, Bailey MD, Bilodeau F. J. Am. Chem. Soc. 2006, 128, 11350–11351.

  • [31]

    Stolle A, Scholz P, Ondruschka B. In: Microwaves in Organic Synthesis, 3rd ed., de la Hoz A, Loupy A, Eds., Wiley-VCH: Weinheim, 2012, Vol. 2, ch. 11, pp. 487–524.

  • [32]

    Petricci E, Taddei M. Chem. Today 2008, 26, 18–22.

  • [33]

    Kormos CM, Leadbeater NE. Synlett 2007, 2006–2010.

  • [34]

    Vanier GS. Synlett 2007, 131–135.

  • [35]

    Iannelli M, Bergamelli F, Kormos CM, Paravisi S, Leadbeater NE. Org. Process Res. Dev. 2009, 13, 634–637.

  • [36]

    Bowman MD, Leadbeater NE, Barnard TM. Tetrahedron Lett. 2008, 49, 195–198.

  • [37]

    Lange PP, Goossen LJ, Podmore P, Underwood T, Sciammetta N. Chem. Commun. 2011, 47, 3628–3630.

  • [38]

    Noël T, Buchwald SL. Chem. Soc. Rev. 2011, 40, 5010–5029. [PubMed]

  • [39]

    Irfan M, Glasnov TN, Kappe CO. ChemSusChem 2011, 4, 300–316. [PubMed]

  • [40]

    Irfan M, Glasnov TN, Kappe CO. Org. Lett. 2011, 13, 984–987. [PubMed]

  • [41]

    Nobis M, Roberge DM. Chem. Today 2011, 29, 56–58.

  • [42]

    Ye X, Johnson MD, Diao T, Yates MH, Stahl SS. Green Chem. 2010, 12, 1180–1186. [PubMed]

  • [43]

    Zope BN, Davis RJ. Top. Catal. 2009, 52, 269–277.

  • [44]

    Lapkin AA, Bozkaya B, Plucinski PK. Ind. Eng. Chem. Res. 2006, 45, 2220–2228.

  • [45]

    Miller PW, Jennings LE, deMello AJ, Gee AD, Long NJ, Vilar R. Adv. Synth. Catal. 2009, 351, 3260–3268.

  • [46]

    Csajági C, Borcsek B, Niesz K, Kovács I, Székelyhidi Z, Bajkó Z, Ürge L, Darvas F. Org. Lett. 2008, 10, 1589–1592. [PubMed]

  • [47]

    Murphy ER, Martinelli JR, Zaborenko N, Buchwald SL, Jensen KF. Angew. Chem. Int. Ed. 2007, 46, 1734–1737.

  • [48]

    Jahnisch K, Baerns M, Hessel V, Ehrfeld W, Haverkamp V, Lowe H, Wille C, Guber A. J. Fluorine Chem. 2000, 105, 117–128.

  • [49]

    McPake CB, Murray CB, Sandford G. Tetrahedron Lett. 2009, 50, 1674–1676.

  • [50]

    O’Brien M, Baxendale IR, Ley SV. Org. Lett. 2010, 12, 1596–1598.

  • [51]

    Browne DL, O’Brien M, Koos P, Cranwell PB, Polyzos A, Ley SV. Synlett 2012, 1402–1406.

  • [52]

    Cranwell PB, O’Brien M, Browne DL, Koos P, Polyzos A, Pena-Lopez M, Ley SV. Org. Biomol. Chem. 2012, 10, 5774–5779. [PubMed]

  • [53]

    Newton S, Ley SV, Arce EC, Grainger DM. Adv. Synth. Catal. 2012, 354, 1805–1812.

  • [54]

    Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV. Angew. Chem. Int. Ed. 2011, 50, 1190–1193.

  • [55]

    Bourne SL, Koos P, O’Brien M, Martin B, Schenkel B, Baxendale IR, Ley SV. Synlett 2011, 2643–2647.

  • [56]

    O’Brien M, Taylor N, Polyzos A, Baxendale IR, Ley SV. Chem. Sci. 2011, 2, 1250–1257.

  • [57]

    Mercadante MA, Leadbeater NE. Green Process. Synth. 2012, 1, 499–507.

  • [58]

    Mercadante MA, Leadbeater NE. Org. Biomol. Chem. 2011, 9, 6575–6578. [PubMed]

  • [59]

    Mercadante MA, Kelly CB, Lee CX, Leadbeater NE. Org. Process Res. Dev. 2012, 16, 1064–1068.

About the article

DiAndra M. Rudzinski

DiAndra M. Rudzinski earned a BS in Chemistry in 2010 at Niagara University in New York State, where she contributed to three peer-reviewed articles. In 2013, under the advisement of Dr. Nicholas E. Leadbeater, she received a Research Master’s Degree in synthetic organic chemistry, from the University of Connecticut. Her research was focused on new organofluorine chemistry, including the formation of trifluoromethyl ketones from Weinreb amide precursors. She also explored the use of microwave and continuous-flow technologies as tools for cleaner and greener metal catalyzed-cyanation and decarboxylative Heck reactions. After an internship at Boehringer-Ingelheim (Ridgefield, CT), she accepted a position at CheminPharma (Farmington, CT) where she is currently employed as a medicinal chemist.

Nicholas E. Leadbeater

Dr. Nicholas E. Leadbeater is currently an Associate Professor at the University of Connecticut in the USA. The overarching theme of his research group is the development of new methods for synthetic chemistry and the use of new technology in both research chemistry and in the undergraduate teaching laboratory. The group’s current hot topics are clean, green oxidation methods, the selective incorporation of fluorine into organic molecules, and the application of flow processing in synthetic chemistry.


Corresponding author: Nicholas E. Leadbeater, Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA


Received: 2013-05-30

Accepted: 2013-06-28

Published Online: 2013-07-27

Published in Print: 2013-03-01



Citation Information: Green Processing and Synthesis, ISSN (Online) 2191-9550, ISSN (Print) 2191-9542, DOI: https://doi.org/10.1515/gps-2013-0043. Export Citation

Comments (0)

Please log in or register to comment.
Log in