Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Green

a systemic approach to energy

Editor-in-Chief: Schlögl, Robert

Managing Editor: Tiedtke, Marion

Editorial Board: Luther, Joachim / Meng, Qingbo / Hüttl, Reinhard F. / Koumoto, Kunihito / Gasteiger, Hubert


SCImago Journal Rank (SJR) 2018: 0.248
Source Normalized Impact per Paper (SNIP) 2018: 0.421

More options …

Manganese Oxides in Heterogeneous (Photo)Catalysis: Possibilities and Challenges

Simon Ristig
  • Max-Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niklas Cibura
  • Max-Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jennifer Strunk
  • Corresponding author
  • Max-Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
  • Center for Nanointegration (CeNIDE), University of Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-16 | DOI: https://doi.org/10.1515/green-2015-0010

Abstract

The aim to develop active photocatalysts based on abundant elements for solar energy conversion reactions has sparked wide interest in manganese oxides as visible light-absorbing alternative to TiO2. Today, a multitude of different routes are available for the synthesis of MnOx species with specific stoichiometry, crystal structure, morphology, size or surface properties. Still, even for the bulk manganese oxides, some controversy remains, for example, with respect to the band gap, which hinders the targeted development of specific manganese oxide catalysts for photocatalysis. In classical heterogeneous catalysis and electrocatalysis, manganese oxides have been successfully used for a wide range of reactions, in particular in the field of (selective) oxidations. Photocatalytic applications have also been reported, but a true photocatalyst for the famous water-splitting reaction, deep insight into the prevailing mechanisms and an understanding of the involved processes has yet to be found. With this review, we aim to give a comprehensive overview over the structural, physical and catalytic properties of manganese oxides, together with an overview over suitable synthesis procedures. This will then serve as a basis for the discussion of the state of the art in the application of manganese oxides in catalysis and photocatalysis.

Keywords: Oxygen evolution; oxygen activation; water splitting; selective oxidation; physicochemical properties of manganese oxides; nanostructured semiconductors

References

  • 1. Fox MA, Dulay MT. Heterogeneous photocatalysis.Chem Rev 1993;93:341–57.Google Scholar

  • 2. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications.Appl Catal B 2012;125:331–49.Google Scholar

  • 3. Mills A, Le Hunte S. An overview of semiconductor photocatalysis.J Photochem Photobiol A Chem 1997;108:1–35.Google Scholar

  • 4. Lüken A, Muhler M, Strunk J. On the role of gold nanoparticles in the selective photooxidation of 2-propanol over Au/TiO2. Phys Chem Chem Phys 2015;17:10391–7.Google Scholar

  • 5. Panayotov DA, Burrows SP, Morris JR. Photooxidation mechanism of methanol on rutile TiO2 nanoparticles. J Phys Chem C 2012;116:6623–35.Google Scholar

  • 6. Xu C, Xu C, Yang W, Ren Z, Dai D, Guo Q, et al. Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2(110). J Am Chem Soc 2013;135:19039–45.Google Scholar

  • 7. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 2013;52:7372–408.Google Scholar

  • 8. Lubitz W, Reijerse EJ, Messinger J. Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energy Environ Sci 2008;1:15.Google Scholar

  • 9. Peter LM, Upul Wijayantha, KG. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. Chem Phys Chem 2014;15:1983–95.Google Scholar

  • 10. Lyons ME, Doyle RL, Fernandez D, Godwin IJ, Browne MP, Rovetta A. The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 2. The surfaquo group mechanism: a mini review. Electrochem Commun 2014;45:56–9.Google Scholar

  • 11. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. Chem Cat Chem 2010;2:724–61.Google Scholar

  • 12. Al-Oweini R, Sartorel A, Bassil BS, Natali M, Berardi S, Scandola F, et al. Photocatalytic water oxidation by a mixed-valent Mn(III)₃Mn(IV)O₃ manganese oxo core that mimics the natural oxygen-evolving center. Angew Chem Int Ed Engl 2014;53:11182–5.Google Scholar

  • 13. Brimblecombe R, Chen J, Wagner P, Buchhorn T, Dismukes GC, Spiccia L, et al. Photocatalytic oxygen evolution from non-potable water by a bioinspired molecular water oxidation catalyst. J Mol Catal A Chem 2011;338:1–6.Google Scholar

  • 14. Brimblecombe R, Swiegers GF, Dismukes GC, Spiccia L. Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed Engl 2008;47:7335–8.Google Scholar

  • 15. Jiao F, Frei H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 2010;46:2920–2.CrossrefGoogle Scholar

  • 16. El-Deab MS, Awad MI, Mohammad AM, Ohsaka T. Enhanced water electrolysis: Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochem Commun 2007;9:2082–7.Google Scholar

  • 17. Najafpour MM, Ehrenberg T, Wiechen M, Kurz P. Calcium manganese(III) oxides (CaMn2O4.xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed Engl 2010;49:2233–7.Google Scholar

  • 18. Mukhopadhyay S, Mandal SK, Bhaduri S, Armstrong WH. Manganese clusters with relevance to photosystem II. Chem Rev 2004;104:3981–4026.Google Scholar

  • 19. Kurz P, Berggren G, Anderlund MF, Styring S. Oxygen evolving reactions catalysed by synthetic manganese complexes: a systematic screening. Dalton Trans 2007;38:4258–61.Google Scholar

  • 20. Cady CW, Crabtree RH, Brudvig GW. Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 2008;252:444–55.Google Scholar

  • 21. Shimazaki Y, Nagano T, Takesue H, Ye B, Tani F, Naruta Y. Characterization of a dinuclear MnV=O complex and is efficient evolution of O2 in the presence of water. Angew Chem Int Ed Engl 2004;43:98–100.Google Scholar

  • 22. Iyer A, Galindo H, Sithambaram S, King’ondu C, Chen C, Suib SL. Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation. Appl Catal A 2010;375:295–302.Google Scholar

  • 23. Cao H, Suib SL. Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts. J Am Chem Soc 1994;116:5334–42.Google Scholar

  • 24. Schurz F, Bauchert JM, Merker T, Schleid T, Hasse H, Gläser R. Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Appl Catal A 2009;355:42–9.Google Scholar

  • 25. Ahmed, Khalid Abdelazez Mohamed, Peng H, Wu K, Huang K. Hydrothermal preparation of nanostructured manganese oxides (MnOx) and their electrochemical and photocatalytic properties.Chem Eng J 2011;172:531–9.Google Scholar

  • 26. Chen J, Lin JC, Purohit V, Cutlip MB, Suib SL. Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides. Catal Today 1997;33:205–14.Google Scholar

  • 27. Segal SR, Suib SL, Tang X, Satyapal S. Photoassisted decomposition of dimethyl methylphosphonate over amorphous manganese oxide catalysts. Chem Mater 1999;11:1687–95.Google Scholar

  • 28. Linsebigler AL, Yates Jr, John T, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 1995;95:735–58.Google Scholar

  • 29. Beranek R. (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv Phys Chem 2011;2011:1–20.Google Scholar

  • 30. Kisch H. Semiconductor photocatalysis: principles and applications. Weinheim: Wiley-VCH;2015.Google Scholar

  • 31. Anta JA. Electron transport in nanostructured metal-oxide semiconductors. Curr Opin Colloid Interface Sci 2012;17:124–31.Google Scholar

  • 32. Levy B. Photochemistry of nanostructured materials for energy applications. J Electroceram 1997;1:239–72.Google Scholar

  • 33. Brune H. Nanotechnology: assessment and perspectives. Berlin, New York: Springer; 2006. (Wissenschaftsethik und TechnikfolgenbeurteilungBd. 27).Google Scholar

  • 34. Arena F, Gumina B, Cannilla C, Spadaro L, Patti A, Spiccia L. Nanostructured MnOx catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen. Appl Catal B: Environ 2015;170–171:233–40.Google Scholar

  • 35. Anpo M, Kamat PV. Environmentally benign photocatalysts: applications of titanium oxide-based materials. New York: Springer; 2010.

  • 36. Holleman AF, Wiberg E, Wiberg N. Lehrbuch der anorganischen Chemie. 102, stark umgearb. u. verb. Aufl. Berlin: de Gruyter, 2007.Google Scholar

  • 37. Jarosch D. Crystal structure refinement and reflectance measurements of hausmannite, Mn3O4. Miner Petrol 1987;37:15–23.Google Scholar

  • 38. Geller S. Structure of [alpha]-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Cryst 1971;B27:821–8.

  • 39. Menezes PW, Indra A, Littlewood P, Schwarze M, Göbel C, Schomäcker R, et al. Nanostructured manganese oxides as highly active water oxidation catalysts: A boost from manganese precursor chemistry. Chem Sus Chem 2014;7:2202–11.Google Scholar

  • 40. Bystrom A, Bystrom AM. The crystal structure of hollandite, the related manganese oxide minerals, and [alpha]-MnO2. Acta Cryst 1950;3:146–54.Google Scholar

  • 41. Byström AM. The crystal structure of ramsdellite, an orthorombic modification of MnO2. Acta Chem Scand 1949;3:163–73.Google Scholar

  • 42. Zachau-Christiansen B, West K, Jacobsen T, Skaarup S. Insertion of lithium into the manganese dioxides: pyrolusite and ramsdellite.Solid State lonics 1994;70:401–6.Google Scholar

  • 43. Suib SL. Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. J Mater Chem 2008;18:1623.Google Scholar

  • 44. Makwana VD, Son Y, Howell AR, Suib SL. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study. J Catal 2002;210:46–52.Google Scholar

  • 45. Son Y, Makwana VD, Howell AR, Suib SL. Efficient, catalytic, aerobic oxidation of alcohols with octahedral molecular sieves. Angew Chem 2001;113:4410–3.Google Scholar

  • 46. Post JE. Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Nat Acad Sci 1999;96:3447–54.Google Scholar

  • 47. Frey CE, Kurz P. Water oxidation catalysis by synthetic manganese oxides with different structural motifs: a comparative study. Chemistry (Weinheim an der Bergstrasse, Germany) 2015;21:14958–68.Google Scholar

  • 48. Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, et al. Alumina-Supported Manganese Oxide Catalysts: I. Characterization: Effect of Precursor and Loading. J Catal 1994;150:94–104.Google Scholar

  • 49. Azzoni CB, Mozzati MC, Galinetto P, Paleari A, Massarotti V, Capsoni D, et al. Thermal stability and structural transition of metastable Mn5O8: in situ micro-Raman study. Solid State Commun 1999;112:375–8.Google Scholar

  • 50. Stobbe ER, Boer BA de, Geus JW. The reduction and oxidation behaviour of manganese oxides. Catal Today 1999;47:161–7.Google Scholar

  • 51. Aboukaïs A, Abi-Aad E, Taouk B. Supported manganese oxide on TiO2 for total oxidation of toluene and polycyclic aromatic hydrocarbons (PAHs): characterization and catalytic activity. Mater Chem Phys 2013;142:564–71.Google Scholar

  • 52. Picasso G, Gutiérrez M, Pina MP, Herguido J. Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors. Chem Eng J 2007;126:119–30.Google Scholar

  • 53. Carnö J, Ferrandon M, Björnbom E, Järas S. Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers. Appl Catal A 1997;155:265–81.Google Scholar

  • 54. Xu R, Wang X, Wang D, Zhou K, Li Y. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. J Catal 2006;237:426–30.Google Scholar

  • 55. Delimaris D, Ioannides T. VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Appl Catal B 2008;84:303–12.Google Scholar

  • 56. Rankin WJ, van Deventer, JS. The kinetics of the reduction of manganous oxide by graphite. J S Afr Inst Min Metall 1980;80:239–47.Google Scholar

  • 57. Kwon KD, Refson K, Sposito G. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite. Geochim Cosmochim Acta 2009;73:4142–50.Google Scholar

  • 58. Zhang Q, Cheng X, Zheng C, Feng X, Qiu G, Tan W, et al. Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: adsorption, oxidation, and photocatalysis. J Environ Sci 2011;23:1904–10.Google Scholar

  • 59. Sherman DM. Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim Cosmochim 2005;69:3249–55.Google Scholar

  • 60. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001;293:269–71.Google Scholar

  • 61. Li S, Ma Z, Zhang J, Wu Y, Gong Y. A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides. Catal Today 2008;139:109–12.Google Scholar

  • 62. Barakat NA, Woo K, Ansari SG, Ko J, Kanjwal MA, Kim HY. Preparation of nanofibers consisting of MnO/Mn3O4 by using the electrospinning technique: The nanofibers have two band-gap energies. Appl Phys A 2009;95:769–76.Google Scholar

  • 63. Jha A, Thapa R, Chattopadhyay KK. Structural transformation from Mn3O4 nanorods to nanoparticles and band gap tuning via Zn doping. Mater Res Bull 2012;47:813–9.Google Scholar

  • 64. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Lokhande CD. A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl Surf Sci 2010;256:4411–6.Google Scholar

  • 65. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Fulari VJ, Lokhande CD. A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J Alloys Compd 2009;484:218–21.Google Scholar

  • 66. Xu HY, Le Xu S, Li XD, Wang H, Yan H. Chemical bath deposition of hausmannite Mn3O4 thin films. Appl Surf Sci 2006;252:4091–6.Google Scholar

  • 67. Hosny NM, Dahshan A. Facile synthesis and optical band gap calculation of Mn3O4 nanoparticles. Mater Chem Phys 2012;137:637–43.Google Scholar

  • 68. Javed Q, Feng-Ping W, Rafique MY, Toufiq AM, Iqbal MZ. Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis. Chinese Phys B 2012;21:117311.Google Scholar

  • 69. Javed Q, Wang FP, Rafique MY, Toufiq AM, Li QS, Mahmood H, et al. Diameter-controlled synthesis of α-Mn2O3 nanorods and nanowires with enhanced surface morphology and optical properties. Nanotechnology 2012;23:415603.Google Scholar

  • 70. Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 2012;6:4349–68.Google Scholar

  • 71. Tian Z, Tong W, Wang J, Duan N, Krishnan VV, Suib SL. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 1997;276:926–30.Google Scholar

  • 72. Sakai N, Ebina Y, Takada K, Sasaki T. Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J Phys Chem B 2005;109:9651–5.Google Scholar

  • 73. Pinaud BA, Chen Z, Abram DN, Jaramillo TF. Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry. J Phys Chem C 2011;115:11830–8.Google Scholar

  • 74. Faleev SV, van Schilfgaarde M, Kotani T. All-electron self-consistent GW approximation: application to Si, MnO, and NiO. Phys Rev Lett 2004;93:126406.Google Scholar

  • 75. Tran F, Blaha P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys Rev Lett 2009;102:226401.Google Scholar

  • 76. Marsman M, Paier J, Stroppa A, Kresse G. Hybrid functionals applied to extended systems. J Phys Condens Matter 2008;20:64201.Google Scholar

  • 77. Franchini C, Podloucky R, Paier J, Marsman M, Kresse G. Ground-state properties of multivalent manganese oxides: density functional and hybrid density functional calculations. Phys Rev B 2007;75:195128.Google Scholar

  • 78. Shaughnessy DA, Nitsche H, Booth CH, Shuh DK, Waychunas GA,Wilson RE, et al. Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Environ Sci Technol 2003;37:3367–74.Google Scholar

  • 79. Janusz W, Galgan A. Electrical double layer at manganese oxides/1:1 electrolyte solution interface. Physicochem Probl Miner Process 2001;35:31–41.Google Scholar

  • 80. O’Reilly S, Hochella MF. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 2003;67:4471–87.Google Scholar

  • 81. Prélot B, Villiéras F, Pelletier M, Razafitianamaharavo A, Thomas F, Poinsignon C. Structural–chemical disorder of manganese dioxides. J Colloid Interface Sci 2003;264:343–53.Google Scholar

  • 82. Natarajan R, Fuerstenau DW. Adsorption and flotation behavior of manganese dioxide in the presence of octyl hydroxamate. Int J Miner Proc 1983;11:139–53.Google Scholar

  • 83. Gray MJ, Malati MA, Rophael MW. The point of zero charge of manganese dioxides. J Electroanal Chem 1978;89:135–40.Google Scholar

  • 84. Kosmulski M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci 2009;152:14–25.Google Scholar

  • 85. Kosmulski M. pH-dependent surface charging and points of zero charge II. Update. J Colloid Interface Sci 2004;275:214–24.Google Scholar

  • 86. Weisz PB. Deep sea manganese nodules as oxidation catalysts. J Catal 1968;10:407–8.Google Scholar

  • 87. Cabrera AL, Maple MB, Arrhenius G. Catalysis of carbon monoxide methanation by deep sea manganate minerals. Appl Catal 1990;64:309–20.Google Scholar

  • 88. Katranas TK, Godelitsas AC, Vlessidis AG, Evmiridis NP. Propane reactions over natural Todorokite. Microporous Mesoporous Mater 2004;69:165–72.Google Scholar

  • 89. Wagloehner S, Nitzer-Noski M, Kureti S. Oxidation of soot on manganese oxide catalysts. Chem Eng J 2015;259:492–504.Google Scholar

  • 90. Shen YF, Zerger RP, Deguzman RN, Suib SL, McCurdy L, Potter DI, et al. Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science 1993;260:511–5.Google Scholar

  • 91. Kanungo B. Physicochemical properties of MnO and MnO2-CuO and their relationship with the catalytic activity for H O decomposition and CO oxidation J Catal. 1979;435:419–35.Google Scholar

  • 92. Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, et al. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 2013;135:3494–501.Google Scholar

  • 93. Robinson DM, Go YB, Greenblatt M, Dismukes GC. Water oxidation by lambda-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J Am Chem Soc 2010;132:11467–9.Google Scholar

  • 94. Jin K, Chu A, Park J, Jeong D, Jerng SE, Sim U, et al. Partially oxidized sub-10 nm MnO nanocrystals with high activity for water oxidation catalysis. Sci Rep 2015;5:10279.Google Scholar

  • 95. Frey CE, Wiechen M, Kurz P. Water-oxidation catalysis by synthetic manganese oxides – systematic variations of the calcium birnessite theme. Dalton Trans 2014;43:4370–9.Google Scholar

  • 96. Luo J, Zhang Q, Huang A, Giraldo O, Suib SL. Double-aging method for preparation of stabilized Na−Buserite and transformations to todorokites incorporated with various metals. Inorg Chem 1999;38:6106–13.Google Scholar

  • 97. Luo S, Duan L, Sun B, Wei M, Li X, Xu A. Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Appl Catal B: Environ 2015;164:92–9.Google Scholar

  • 98. Villalobos M, Toner B, Bargar J, Sposito G. Characterization of the manganese oxide produced by pseudomonas putida strain MnB1. Geochim Cosmochim 2003;67:2649–62.Google Scholar

  • 99. Zaharieva I, Najafpour MM, Wiechen M, Haumann M, Kurz P, Dau H. Synthetic manganese–calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ Sci 2011;4:2400.Google Scholar

  • 100. Wiechen M, Zaharieva I, Dau H, Kurz P. Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion. Chem Sci 2012;3:2330.Google Scholar

  • 101. Son Y, Makwana VD, Howell AR, Suib SL. Efficient, catalytic, aerobic oxidation of alcohols with octahedral molecular sieves. Angew Chem Int Ed 2001;40:4280–3.Google Scholar

  • 102. Tian Z, Yin Y, Suib SL, O’young CL. Effect of Mg2+ ions on the formation of todorokite type manganese oxide octahedral molecular sieves. Chem Mater 1997;9:1126–33.Google Scholar

  • 103. Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL. A review of porous manganese oxide materials. Chem Mater 1998;10:2619–28.Google Scholar

  • 104. Takahashi Y, Manceau A, Geoffroy N, Marcus MA, Usui A. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim Cosmochim Acta 2007;71:984–1008.Google Scholar

  • 105. Tusar NN, Jank S, Gläser R. Manganese-Containing Porous Silicates: Synthesis Structural Properties and Catalytic Applications. Chem Cat Chem 2011;3:254–69.Google Scholar

  • 106. Morita M, Iwakura C, Tamura H. The anodic characteristics of massive manganese oxide electrode. Electrochim Acta 1979;24:357–62.Google Scholar

  • 107. Trasatti S. Electrocatalysis by oxides –Attempt at a unifying approach. J Electroanal Chem Interfacial Electrochem 1980;111:125–31.Google Scholar

  • 108. Singh A, Roy Chowdhury D, Amritphale SS, Chandra N, Singh IB. Efficient electrochemical water oxidation catalysis by nanostructured Mn2O3. RSC Adv 2015;5:24200–4.Google Scholar

  • 109. Gorlin Y, Jaramillo TF. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 2010;132:13612–4.Google Scholar

  • 110. Kuo C, Mosa IM, Poyraz AS, Biswas S, El-Sawy AM, Song W, et al. Robust mesoporous manganese oxide catalysts for water oxidation. ACS Catal. 2015;5:1693–9.Google Scholar

  • 111. Ching S, Kriz DA, Luthy KM, Njagi EC, Suib SL. Self-assembly of manganese oxide nanoparticles and hollow spheres. Catalytic activity in carbon monoxide oxidation. Chem Commun 2011;47:8286–8.Google Scholar

  • 112. Wang Y, Kobayashi H, Yamaguchi K, Mizuno N. Manganese oxide-catalyzed transformation of primary amines to primary amides through the sequence of oxidative dehydrogenation and successive hydration. Chem Commun 2012;48:2642–4.Google Scholar

  • 113. Durand JP, Senanayake SD, Suib SL, Mullins DR. Reaction of formic acid over amorphous manganese oxide catalytic systems: an In Situ study. J Phys Chem C 2010;114:20000–6.Google Scholar

  • 114. Makwana V. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 Catalyst: A Kinetic and isotope-labeling study. J Catal 2002;210:46–52.Google Scholar

  • 115. Piumetti M, Fino D, Russo N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl Catal B 2015;163:277–87.Google Scholar

  • 116. Rahaman H, Barman K, Jasimuddin S, Ghosh SK. Bifunctional gold–manganese oxide nanocomposites: benign electrocatalysts toward water oxidation and oxygen reduction. RSC Adv 2014;4:41976–81.Google Scholar

  • 117. Tammam RH, Fekry AM, Saleh MM. Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles. Int J Hydrogen Energy 2015;40:275–83.Google Scholar

  • 118. Li C, Melaet G, Ralston WT, An K, Brooks C, Ye Y, et al. High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis. Nat Commun 2015;6:6538.Google Scholar

  • 119. Elmaci G, Frey CE, Kurz P, Zümreoğlu-Karan B. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites. Inorg Chem 2015;54:2734–41.Google Scholar

  • 120. Han Y, Chen F, Zhong Z, Ramesh K, Chen L, Widjaja E. Controlled synthesis, characterization, and catalytic properties of Mn(2)O(3) and Mn(3)O(4) nanoparticles supported on mesoporous silica SBA-15. J Phys Chem B 2006;110:24450–6.Google Scholar

  • 121. Dong X, Shen W, Zhu Y, Xiong L, Shi J. Facile synthesis of manganese-loaded mesoporous silica materials by direct reaction between KMnO4 and an in-situ surfactant template. Adv Funct Mater 2005;15:955–60.Google Scholar

  • 122. Zhang J, Guo C, Zhang L, Li CM. Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction. Chem Commun 2013;49:6334–6.Google Scholar

  • 123. Chandra S, Das P, Bag S, Bhar R, Pramanik P. Mn2O3 decorated graphene nanosheet: an advanced material for the photocatalytic degradation of organic dyes. Mater Sci Eng B 2012;177:855–61.Google Scholar

  • 124. Lu X, Song C, Chang C, Teng Y, Tong Z, Tang X. Manganese Oxides supported on TiO 2 –graphene nanocomposite catalysts for selective catalytic reduction of NO X with NH3 at low temperature. Ind Eng Chem Res 2014;53:11601–10.Google Scholar

  • 125. Rekha M, Kathyayini H, Nagaraju N. Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines. Front Chem Sci Eng 2013;7:415–21.Google Scholar

  • 126. Najafpour M, Hosseini S, Hołyńska M, Tomo T, Allakhverdiev S. Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold: Photosynthesis Research. Photosynth Res 2015;126:477–87.Google Scholar

  • 127. Parida KM, Dash SS. Manganese containing MCM-41: Synthesis, characterization and catalytic activity in the oxidation of ethylbenzene. J Mol Catal A Chem 2009;306:54–61.Google Scholar

  • 128. Vetrivel S, Pandurangan A. Aerial oxidation of p-isopropyltoluene over manganese containing mesoporous MCM-41 and Al-MCM-41 molecular sieves. J Mol Catal A Chem 2006;246:223–30.Google Scholar

  • 129. Ramallo-López JM, Lede EJ, Requejo FG, Rodriguez JA, Kim J, Rosas-Salas R, et al. XANES characterization of extremely nanosized metal-carbonyl subspecies (Me = Cr, Mn, Fe, and Co) confined into the mesopores of MCM-41 materials. J Phys Chem B 2004;108:20005–10.Google Scholar

  • 130. Orlov A, Klinowski J. Oxidation of volatile organic compounds on SBA-15 mesoporous molecular sieves modified with manganese. Chemosphere 2009;74:344–8.Google Scholar

  • 131. Pérez H, Navarro P, Delgado JJ, Montes M. Mn-SBA15 catalysts prepared by impregnation: Influence of the manganese precursor. Appl Catal A 2011;400:238–48.Google Scholar

  • 132. Zhang FM, Liu BS, Zhang Y, Guo YH, Wan ZY, Subhan F. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas. J Hazard Mater 2012;233–234:219–27.Google Scholar

  • 133. Han Y, Chen F, Zhong Z, Ramesh K, Widjaja E, Chen L. Synthesis and characterization of Mn3O4 and Mn2O3 nanocrystals on SBA-15: Novel combustion catalysts at low reaction temperatures. Catal Commun 2006;7:739–44.Google Scholar

  • 134. Han YF, Chen F, Ramesh K, Zhong Z, Widjaja E, Chen L. Preparation of nanosized Mn3O4/SBA-15 catalyst for complete oxidation of low concentration EtOH in aqueous solution with H2O2. Appl Catal B 2007;76:227–34.Google Scholar

  • 135. Yonemitsu M, Tanaka Y, Iwamoto M. Metal ion-planted MCM-41. 1. Planting of Manganese(II) ion into MCM-41 by a newly developed template-ion exchange method. Chem Mater 1997;9:2679–81.Google Scholar

  • 136. Zhang Q, Wang Y, Itsuki S, Shishido T, Takehira K. Manganese-containing MCM-41 for epoxidation of styrene and stilbene. J Mol Catal A Chem 2002;188:189–200.Google Scholar

  • 137. Qi B, Lou L, Wang Y, Yu K, Yang Y, Liu S. Comparison of different prepared Mn-MCM-41 catalysts in the catalytic epoxidation of alkenes with 30% H2O2. Microporous Mesoporous Mater 2014;190:275–83.Google Scholar

  • 138. Derylo-Marczewska A, Gac W, Popivnyak N, Zukocinski G, Pasieczna S. The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials. Catal Today 2006;114:293–306.Google Scholar

  • 139. Tang Q, Hu S, Chen Y, Guo Z, Hu Y, Chen Y, et al. Highly dispersed manganese oxide catalysts grafted on SBA-15: synthesis, characterization and catalytic application in trans-stilbene epoxidation. Microporous Mesoporous Mater 2010;132:501–9.Google Scholar

  • 140. Fernandes Ta, Nunes CD, Vaz PD, Calhorda MJ, Brandão P, Rocha J, et al. Synthesis and catalytic properties of manganese(II) and oxovanadium(IV) complexes anchored to mesoporous MCM-41. Microporous Mesoporous Mater 2008;112:14–25.Google Scholar

  • 141. Mahdavi V, Mardani M. Preparation of manganese oxide immobilized on SBA-15 by atomic layer deposition as an efficient and reusable catalyst for selective oxidation of benzyl alcohol in the liquid phase. Mater Chem Phys 2015;155:136–46.Google Scholar

  • 142. Pickrahn KL, Park SW, Gorlin Y, Lee HB, Jaramillo TF, Bent SF. Active MnO x electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions. Adv Energy Mater 2012;2:1269–77.Google Scholar

  • 143. Pickrahn KL, Gorlin Y, Seitz LC, Garg A, Nordlund D, Jaramillo TF, et al. Applications of ALD MnO to electrochemical water splitting. Phys Chem Chem Phys: PCCP 2015;17:14003–11.Google Scholar

  • 144. Satish Kumar G, Palanichamy M, Hartmann M, Murugesan V. Hydrothermal incorporation of manganese in the framework of SBA-15. Catal Commun 2007;8:493–7.Google Scholar

  • 145. Kumar GS, Palanichamy M, Hartmann M, Murugesan V. A new route for the synthesis of manganese incorporated SBA-15. Microporous Mesoporous Mater 2008;112:53–60.Google Scholar

  • 146. Selvaraj M, Lee TG. Direct synthesis of well-ordered and unusually reactive MnSBA-15 mesoporous molecular sieves with high manganese content. J Phys Chem B 2006;110:21793–802.Google Scholar

  • 147. Chuang K, Liu Z, Chang Y, Lu C, Wey M. Study of SBA-15 supported catalysts for toluene and NO removal: the effect of promoters (Co, Ni, Mn, Ce). Reac Kinet Mech Cat 2010;99:409–420.Google Scholar

  • 148. Tomer VK, Duhan S, Adhyapak PV, Mulla IS, Gouma P. Mn-Loaded mesoporous silica nanocomposite: a highly efficient humidity sensor. J Am Ceram Soc 2015;98:741–7.Google Scholar

  • 149. Selvaraj M, Seshadri KS, Pandurangan A, Lee TG. Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr–Mn-MCM-41 molecular sieves. Microporous Mesoporous Mater 2005;79:261–8.Google Scholar

  • 150. Selvaraj M, Sinha PK, Lee K, Ahn I, Pandurangan A, Lee TG. Synthesis and characterization of Mn–MCM-41and Zr–Mn-MCM-41. Microporous Mesoporous Mater 2005;78:139–49.Google Scholar

  • 151. Stoerzinger KA, Risch M, Han B, Shao-Horn Y. Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal 2015;5:6021–31.Google Scholar

  • 152. Harriman A, Pickering IJ, Thomas JM, Christensen PA. Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc, Faraday Trans 1 1988;84:2795.Google Scholar

About the article

Simon Ristig

Dr. Simon Ristig studied at the University of Duisburg-Essen, where he completed his Ph.D. in 2014 in inorganic chemistry, conducting research on alloyed noble metal nanoparticles. Since 2015 he is a postdoctoral researcher at the Max-Planck-Institute for Chemical Energy Conversion in the area of Nanobased Heterogeneous Catalysts with specialization on manganese oxide based photocatalysis materials.

Niklas Cibura

Niklas Cibura obtained his M.Sc. degree of chemistry at the Ruhr-University-Bochum with the specialization on industrial chemistry and photocatalysis. At the beginning of September 2015, he has started his Ph.D. studies at the Max-Planck-Institute for Chemical Energy Conversion in the field of Nanobased Heterogeneous Catalysts with a focus on photocatalysis.

Jennifer Strunk

Dr. Jennifer Strunk received her diploma and her PhD in industrial chemistry from the Ruhr-University Bochum in Germany. From 2008 to 2010 she stayed as postdoctoral fellow at the University of California, Berkeley, in the group of Prof. Alexis T. Bell. From 2010 to 2014 she was Junior Research Group Leader at the Ruhr-University Bochum, where she and her research group conducted fundamental studies of the reduction of carbon dioxide and of hydrogen evolution under highly controlled conditions. Since October 2014 she is Research Group Leader of the “Nanobased Heterogeneous Catalysts” (NanoCat) group at the Max-Planck-Institute for Chemical Energy Conversion. She is also a member of the “Center for Nanointergration Duisburg-Essen” (CENIDE) at the University Duisburg-Essen. Her current research focuses on structure-function relationships of photocatalysts in energy conversion reactions.


Received: 2015-08-07

Accepted: 2015-11-13

Published Online: 2015-12-16

Published in Print: 2015-12-01


Funding: Part of this work was generously funded by the Mercator Research Center Ruhr (MERCUR) within the scope of the project “Photoactive Oxide Materials for the Visible Spectral Range,” project-ID Pr-2013-0047


Citation Information: Green, Volume 5, Issue 1-6, Pages 23–41, ISSN (Online) 1869-8778, ISSN (Print) 1869-876X, DOI: https://doi.org/10.1515/green-2015-0010.

Export Citation

©2015 by De Gruyter Mouton.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bushra Tehseen, Asma Rehman, Muniba Rahmat, Haq Nawaz Bhatti, Aiguo Wu, Faheem K. But, Gul Naz, Waheed S. Khan, and Sadia Z. Bajwa
Biosensors and Bioelectronics, 2018

Comments (0)

Please log in or register to comment.
Log in