Jump to ContentJump to Main Navigation
Show Summary Details
More options …


a systemic approach to energy

Editor-in-Chief: Schlögl, Robert

Managing Editor: Tiedtke, Marion

Editorial Board: Luther, Joachim / Meng, Qingbo / Hüttl, Reinhard F. / Koumoto, Kunihito / Gasteiger, Hubert

SCImago Journal Rank (SJR) 2018: 0.248
Source Normalized Impact per Paper (SNIP) 2018: 0.421

More options …

Chemical Energy Conversion as Enabling Factor to Move to a Renewable Energy Economy

Salvatore Abate
  • Department DIECII, Section Industrial Chemistry, University of Messina, ERIC aisbl and INSTM/CASPE, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriele CentiORCID iD: http://orcid.org/0000-0001-5626-9840 / Siglinda Perathoner
  • Corresponding author
  • Department DIECII, Section Industrial Chemistry, University of Messina, ERIC aisbl and INSTM/CASPE, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-16 | DOI: https://doi.org/10.1515/green-2015-0011


The role of chemical energy storage and solar fuels as key elements for the sustainable chemical and energy production is discussed in this concept paper. It is shown how chemical energy storage, with the development of drop-in carbon-based solar fuels, will play a central role in the future low-carbon economy, but it is necessary to consider its out-of-the-grid use, rather than being limited to be a tool for smart grids. Related aspects discussed are the possibility to: (i) enable a system of trading renewable energy on a world scale (out-of-the-grid), including the possibility to exploit actually unused remote resources, (ii) develop a solar-driven and low-carbon chemical production, which reduces the use of fossil fuels and (iii) create a distributed energy production, going beyond the actual limitations and dependence on the grid.

Keywords: solar fuels; CO2; chemical energy storage; renewable energy economy; sustainable energy and chemistry


  • 1. Farrauto RJ. Building the hydrogen economy. Hydrocarbon Eng 2009;14:25–6.Google Scholar

  • 2. Loisel R, Baranger L, Chemouri N, Spinu S, Pardo S. Economic evaluation of hybrid off-shore wind power and hydrogen storage system. Int J Hydrogen Energy 2015;40: 6727–39.Google Scholar

  • 3. Jacobsson TJ, Fjaellstroem V, Edoff M, Edvinsson T. Sustainable solar hydrogen production: From photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci 2014;7:2056–70.Google Scholar

  • 4. Müeller-Langer F, Tzimas E, Kaltschmitt M, Peteves S. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 2007;32:3797–810.Google Scholar

  • 5. Dunn S. Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 2002;27:235–64.Google Scholar

  • 6. Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GE. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem Soc Rev 2014;43:7995–8048.Google Scholar

  • 7. Olah GA. Beyond oil and gas: The methanol economy. Angew Chem Int Ed 2005;44:2636–9.Google Scholar

  • 8. Alberico E, Nielsen M. Towards a methanol economy based on homogeneous catalysis: Methanol to H2 and CO2 to methanol. Chem Commun 2015;51:6714–25.Google Scholar

  • 9. Centi G, Perathoner S. CO2-based energy vectors for the storage of solar energy. Greenhouse Gases Sci Technol 2011;1:21–35.Google Scholar

  • 10. Koyama M, Kimura S, Kikuchi Y, Nakagaki T, Itaoka K. Present status and points of discussion for future energy systems in Japan from the aspects of technology options. J Chem Eng Jpn 2014;47:499–513.Google Scholar

  • 11. Mischke P, Karlsson KB. Modelling tools to evaluate China’s future energy system - A review of the Chinese perspective. Energy 2014;69:132–43.Google Scholar

  • 12. Brouwer AS, van den Broek M, Seebregts A, Faaij APC. The flexibility requirements for power plants with CCS in a future energy system with a large share of intermittent renewable energy sources. Energy Procedia 2013;37:2657–64.Google Scholar

  • 13. von der Fehr NH. Cost benefit analysis in the context of the energy infrastructure package. Final report Jan. 2013, http://www.eui.eu/Projects/THINK/ Documents/Thinktopic/THINKTopic10.pdf.

  • 14. International Energy Agency (IEA). Renewable energy 2014. Medium-term market report. Paris (France): IEA, 2012.Google Scholar

  • 15. Soman S. Molecular Systems for Solar H2: Path to a Renewable Future. Comments Inorg Chem 2015;35:82–120.Google Scholar

  • 16. de Poulpiquet A, Ranava D, Monsalve K, Giudici-OrticoniMT, Lojou E. Biohydrogen for a New Generation of H2/O2 Biofuel Cells: A Sustainable Energy Perspective. ChemElectroChem 2014;1:1724–50.Google Scholar

  • 17. Alves HJ, Bley Junior C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra- Araujo CH. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy 2013;38:5215–25.Google Scholar

  • 18. Ozbilen A, Dincer I, Rosen MA. Exergetic life cycle assessment of a hydrogen production process. Int J Hydrogen Energy 2012;37:5665–75.Google Scholar

  • 19. Reiter G, Lindorfer J. Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology. Int J Life Cycle Assess 2015;20:477–89.Google Scholar

  • 20. Sathre R, Scown CD, Morrow WR III, Stevens JC, Sharp ID, Ager JW, et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ Sci 2014;7:3264–78.Google Scholar

  • 21. Patyk A, Bachmann TM, Brisse A. Life cycle assessment of H2 generation with high temperature electrolysis. Int J Hydrogen Energy 2013;38:3865–80.Google Scholar

  • 22. Lee JY, Yoo M, Cha K, Lim TW, Hur T. Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel. Int J Hydrogen Energy 2009;34:4243–55.Google Scholar

  • 23. Centi G, Perathoner S. Perspectives and State of the Art in Producing Solar Fuels and Chemicals from CO2. In: Centi G, Perathoner S, editors. Green carbon dioxide. Wiley & Sons: Hoboken, NJ-US, 2014, Ch. 1:1–24.Google Scholar

  • 24. Centi G, Perathoner S. Towards solar fuels from water and CO2. ChemSusChem 2010;3:195–208.Google Scholar

  • 25. Thomas JM. Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks. ChemSusChem 2014;7:1801–32.Google Scholar

  • 26. Joya KS, de Groot HJM. Artificial leaf goes simpler and more efficient for solar fuel generation. ChemSusChem 2014;7:73–6.Google Scholar

  • 27. Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem 2012;5:500–21.Google Scholar

  • 28. Nocera DG. The artificial leaf. Acc Chem Res 2012;45:767–76.Google Scholar

  • 29. Zhou H, Fan T, Zhang D. An insight into artificial leaves for sustainable energy inspired by natural photosynthesis. ChemCatChem 2011;3:513–28.Google Scholar

  • 30. Michl J. Photochemical CO2 reduction: Towards an artificial leaf? Nat Chem 2011;3:268–9.Google Scholar

  • 31. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38:253–78.Google Scholar

  • 32. Fukuzumi S. Bioinspired energy conversion systems for hydrogen production and storage. Eur J Inorg Chem 2008;9:1351–62.Google Scholar

  • 33. Xu Y, Zhang B. Hydrogen photogeneration from water on the biomimetic hybrid artificial photocatalytic systems of semiconductors and earth-abundant metal complexes: Progress and challenges. Catal Sci Technol 2015;5:3084–96.Google Scholar

  • 34. Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting. Nat Chem Biol 2014;10:492–501.Google Scholar

  • 35. Messinger J, Lubitz W, Shen JR. Photosynthesis: From natural to artificial. Phys Chem Chem Phys 2014;16:11810–1.Google Scholar

  • 36. Barber J, Tran PD. From natural to artificial photosynthesis. J R Soc Interface 2013;10:20120984/1–20120984/16.Google Scholar

  • 37. Frischmann PD, Mahata K, Wuerthner F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 2013;42:1847–70.Google Scholar

  • 38. Larkum AW. Harvesting solar energy through natural or artificial photosynthesis: Scientific, social, political and economic implications. RSC Energy Env Ser 2012;5:1–19.Google Scholar

  • 39. McKinlay JB. Systems Biology of Photobiological Hydrogen Production by Purple Non-sulfur Bacteria. In: Zannoni D, De Philippis D editors. Microbial BioEnergy: Hydrogen Production, Vol. 38 of the seriesAdv Photosynth Respiration Germany: Springer, Heidelberg, 2014, Ch. 7:155–76.Google Scholar

  • 40. Eroglu E, Melis A. Photobiological hydrogen production: Recent advances and state of the art. Biores Technol 2011;102;8403–13.Google Scholar

  • 41. Azwar MY, Hussain MA, Abdul-Wahab AK. Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renew Sust Energy Rev 2014;31:158–73.Google Scholar

  • 42. Samad T, Kiliccote S. Smart grid technologies and applications for the industrial sector. Comput Chem Eng 2012;47:76–84.Google Scholar

  • 43. Sato N. Energy Technologies as Power Storage and Generation towards the Business Model in Sustainable Society. J Chem Chem Eng 2010;4:1–6.Google Scholar

  • 44. Boicea VA. Energy Storage Technologies: The Past and the Present. Proc IEEE 2014;102:1777–94.Google Scholar

  • 45. Kumar G, Demirci S, Lin CY. Hydrogen Smart-Grids: Smart Metering of Electricity from Hydrogen Fuel Cells. J Sust Bioenergy Syst 2013;3:160–2.Google Scholar

  • 46. Whittingham MS. History, evolution, and future status of energy storage. Proc IEEE 2012;100:1518–36.Google Scholar

  • 47. Schlögl R. The Role of Chemistry in the Energy Challenge. ChemSusChem 2010;3:209.Google Scholar

  • 48. Schlögl R, The solar refinery, In: Schlögl R. editor. Chemical energy storage. Berlin, Germany: De Gruyter, 2013, Ch. 1:1–34.Google Scholar

  • 49. Kousksou T, Bruel P, Jamil A, El Rhafiki T, Zeraouli Y. Energy storage: Applications and challenges. Sol Energy Mat Sol Cells 2014;120:59–80.Google Scholar

  • 50. Chatzivasileiadi A, Ampatzi E, Knight I. Characteristics of electrical energy storage technologies and their applications in buildings. Renew Sust Energy Rev 2013;25:814–30.Google Scholar

  • 51. Li Y, Fu ZY, Su BL. Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 2012;22:4634–67.Google Scholar

  • 52. Liu J, Zhang JG, Yang Z, Lemmon JP, Imhoff C, Graff GL, et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv Funct Mater 2013;23:929–46.Google Scholar

  • 53. Hou Y, Vidu R, Stroeve P. Solar energy storage methods. Ind Eng Chem Res 2011;50:8954–64.Google Scholar

  • 54. Dillon AC. Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev 2010;110:6856–72.Google Scholar

  • 55. Liu P, Georgiadis MC, Pistikopoulos EN. An energy systems engineering approach for the design and operation of microgrids in residential applications. Chem Eng Res Design 2013;91:2054–69.Google Scholar

  • 56. Ho WS, Chin HY, Wong KC, Muis ZA, Hashim H. Grid-connected distributed energy generation system planning and scheduling. Desalin Water Treat 2014;52:1202–13.Google Scholar

  • 57. Zou Z, Liu P, Li Z, Ni W. Economic assessment of a distributed energy system in a new residential area with existing grid coverage in China. Comput Chem Eng 2013;48:165–74.Google Scholar

  • 58. Zhou Z, Liu P, Zhang J, Li Z. Evaluating the impact of carbon taxes on the optimal design of distributed energy systems. Adv Mater Res 2012;524–527:2420–4.Google Scholar

  • 59. Lorente S, Bejan A, Al-Hinai K, Sahin AZ, Yilbas BS. Constructal design of distributed energy systems: Solar power and water desalination. Int J Heat Mass Transfer 2012;55:2213–8.Google Scholar

  • 60. Li H, Kang S, Dong W, Cai B, Zhang G. Design and analysis of energy storage system applied to building energy smart grid based on natural gas based distributed energy system (NDES-SG). Adv Mater Res 2012;374–377;1119–26.Google Scholar

  • 61. Thomas JM. Reflections on the topic of solar fuels. Energy Environ Sci 2014;7:19–20.Google Scholar

  • 62. van der Giesen C, Kleijn R, Kramer GJ. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environ Sci Technol 2014;48:7111–21.Google Scholar

  • 63. Artero V, Fontecave M. Solar fuels generation and molecular systems: Is it homogeneous or heterogeneous catalysis? Chem Soc Rev 2013;42:2338–56.Google Scholar

  • 64. Harriman A. Artificial light-harvesting arrays for solar energy conversion. Chem Commun 2015:51:11745–56.Google Scholar

  • 65. Sattler C, Agrafiotis C, Brendelberger S, Call F, Houaijia A, Jung C, et al. Current and Future Status of Solar Fuel Technology in Germany. Artificial light-harvesting arrays for solar energy conversion. J Jpn Inst Energy 2015;94:201–11.Google Scholar

  • 66. Yan K, Wu G. Titanium Dioxide Microsphere-Derived Materials for Solar Fuel Hydrogen Generation. ACS Sust Chem Eng 2015;3:779–91.Google Scholar

  • 67. Dempsey JL, Winkler JR, Gray HB. Solar Fuels: Approaches to Catalytic Hydrogen Evolution. In: Reedijk J, Poeppelmeier K, editors. Comprehensive inorganic chemistry II. Elsevier Science, Amsterdam, The Netherlands. 2013, Ch. 8–15:553–65.Google Scholar

  • 68. Herron JA, Kim J, Upadhye AA, Huber GW, Maravelias CS. A general framework for the assessment of solar fuel technologies. Energy Environ Sci 2015;8:126–57.Google Scholar

  • 69. Centi G, Perathoner S. Carbon nanotubes for sustainable energy applications. ChemSusChem 2011;4:913–25.Google Scholar

  • 70. Centi G, Perathoner S, Passalacqua R, Ampelli C. Solar production of fuels from water and CO2. In: Muradov NZ, Veziroglu TN, editors. Carbon-neutral fuels and energy carriers. Boca Raton, FL-US: CRC Press, 2012, Ch. 4:291–323.Google Scholar

  • 71. Schiebahn S, Grube T, Robinius M, Zhao L, Otto A, Kumar B, et al. Power to gas. In: Stolten D, Scherer V, Viktor, editors. Transition to renewable energy systems. Weinheim, Germany: Wiley-VCH, 2014, Ch. 39:813–48.Google Scholar

  • 72. Mergel J, Carmo M, Fritz D. Status on Technologies for Hydrogen Production by Water Electrolysis. In: Stolten D, Scherer V, Viktor, editors. Transition to renewable energy systems. Wiley-VCH, 2014, Ch. 22:425–50.

  • 73. Centi G, Quadrelli EA, Perathoner S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 2013;6:1711–31.Google Scholar

  • 74. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A. CO2 methanation over heterogeneous catalysts: Recent progress and future prospects. Green Chem 2015;17:2647–63.Google Scholar

  • 75. Goetz M, Lefebvre J, Moers F, McDaniel Koch A, Graf F, Bajohr S, et al. Renewable Power-to-Gas: A technological and economic review. Renew Energy 2016;85:1371–90.Google Scholar

  • 76. Reiter G, Lindorfer J. Evaluating CO2 sources for power-to-gas applications-A case study for Austria. J CO2 Utilization 2015;10:40–9.Google Scholar

  • 77. Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 2015;40:4285–94.Google Scholar

  • 78. Ampelli C, Perathoner S, Centi G. CO2 utilization: An enabling element to move to a resource-and energy-efficient chemical and fuel production. Phil Trans R Soc A Math Phys Eng Sci 2015;373:1–35.Google Scholar

  • 79. Kluczka S, Schmitz M, Roeb M, Vaessen C. Methanol from CO2 and Solar Energy – A Literature Review. J Energy Power Eng 2012;6:361–8.Google Scholar

  • 80. Waugh KC. Methanol synthesis. Catal Lett 2012;142:1153–66.Google Scholar

  • 81. Centi G, Perathoner S. Advances in Catalysts and Processes for Methanol Synthesis from CO2. In: de Falco M, Iaquaniello G, Centi G, editors. CO2: a valuable source of carbon. Heidelberg, Germany: Springer 2013, Ch. 9:147–70.Google Scholar

  • 82. Nieminen J, Dincer I, Naterer G. Comparative performance analysis of PEM and solid oxide steam electrolysers. Int J Hydrogen Energy 2010;35:10842–50.Google Scholar

  • 83. Millet P, Ngameni R, Grigoriev SA, Mbemba N, Brisset F, Ranjbari A, et al. PEM water electrolyzers: From electrocatalysis to stack development. Int J Hydrogen Energy 2010;35:5043–52.Google Scholar

  • 84. Bi L, Boulfrad S, Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev 2014;43:8255–70.Google Scholar

  • 85. Wang M, Wang Z, Gong X, Guo Z. The intensification technologies to water electrolysis for hydrogen production – A review. Renew Sust Energy Rev 2014;29:573–88.Google Scholar

  • 86. Mocoteguy P, Brisse A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int J Hydrogen Energy 2013;38:15887–902.Google Scholar

  • 87. Sohal MS, O’Brien JE, Stoots CM, Sharma VI, Yildiz B, Virkar A. Degradation issues in solid oxide cells during high temperature electrolysis. J Fuel Cell Sci Technol 2012;9:011017/1–011017/10.Google Scholar

  • 88. Kalamaras CM, Efstathiou AM. Hydrogen Production Technologies: Current State and Future Developments. Conf Papers Sci 2013:1–11.

  • 89. Dal Santo V, Gallo A, Naldoni A, Guidotti M, Psaro R. Bimetallic heterogeneous catalysts for hydrogen production. Catal Today 2012;197:190–205.Google Scholar

  • 90. Melero JA, Iglesias J, Garcia A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ Sci 2012;5:7393–420.Google Scholar

  • 91. El Doukkali M, Iriondo A, Cambra JF, Arias PL. Recent improvement on H2 production by liquid phase reforming of glycerol: Catalytic properties and performance, and deactivation studies. Top Catal 2014;57:1066–77.Google Scholar

  • 92. International Energy Agency (IEA). Technology Roadmap – Energy and GHG Reductions in the Chemical Industry via Catalytic Processes IEA.2013. Available at: https://www.iea.org/publications/freepublications/publication/Chemical_Roadmap_2013_Final_WEB.pdf.

  • 93. Deng S, Hynes R. Advanced combined cycle systems based on methanol indirect combustion. J Eng Gas Turbines Power 2012;134:063001–9.Google Scholar

  • 94. Santin M, Traverso A, Magistri L, Massardo A. Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels. Energy 2010;35:1077–83.Google Scholar

  • 95. Zickfeld F, Wieland A, Desert Power 2050 (Dec. 2012). Available at: www.diieumena.com/fileadmin/flippingbooks/dp2050_exec_sum_engl_web.pdf.

  • 96. Renewable Energy Policy Network for the 21st Century (REN21). Renewables 2013 Global Status Report Available at: www.ren21.net/Portals/0/documents/Resources/GSR/2013/ GSR2013_highres.pdf.

  • 97. International Energy Agency (IEA). Renewable Energy 2012. Medium-Term Market Report. Available at: www.iea.org/publications/freepublications/publication/MTrenew2012_ web.pdf.

  • 98. World Energy Council, 2010 Survey of Energy Resources. Available at: www.worldenergy.org/documents/ser_2010_report_1.pdf.

  • 99. Lanzafame P, Centi G, Perathoner S. Catalysis for biomass and CO2 use through solar energy: Opening new scenarios for a sustainable and low-carbon chemical production. Chem Soc Rev 2014;43:7562–80.Google Scholar

  • 100. Perathoner S, Centi G. CO2 recycling: A key strategy to introduce green energy in the chemical production chain. ChemSusChem 2014;7:1274–82.Google Scholar

  • 101. Perathoner S, Centi G. A new scenario for green & sustainable chemical production. J Chinese Chem Soc 2014;61:719–30.Google Scholar

  • 102. Budzianowski WM. Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors. Energy 2012;41:280–97.Google Scholar

  • 103. Zhang YH, Huang WD. Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution. Trends Biotechnol 2012;30:301–6.Google Scholar

  • 104. Zhang YH. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus. Energy Sci Eng 2013;1:27–41.Google Scholar

  • 105. International Energy Agency. Energy Technology Perspectives – Scenarios & Strategies to 2050, 978-92-64-08597-8, OECD/IEA, Paris, 2010.

  • 106. Skagestad R, Onarheim K, Mathisen A. Carbon Capture and Storage (CCS) in industry sectors - Focus on Nordic countries. Energy Procedia 2014;63:6611–22.Google Scholar

  • 107. Tangen G, Lindeberg EG, Noettvedt A, Eggen S. Large-scale storage of CO2 on the Norwegian shelf Enabling CCS readiness in Europe. Energy Procedia 2014;51:326–33.Google Scholar

  • 108. Echevarria Huaman RN, Tian XJ. Energy related CO2 emissions and the progress on CCS projects: A review. Renew Sust Energy Rev 2014;31: 368–85.Google Scholar

  • 109. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, MacDowell N, et al. Carbon capture and storage update. Energy Environ Sci 2014;7:130–89.Google Scholar

  • 110. Zapp P, Schreiber A, Marx J, Haines M, Hake JF, Gale J. Overall environmental impacts of CCS technologies-A life cycle approach. Int J Greenhouse Gas Control 2012;8:12–21.Google Scholar

  • 111. Barbato L, Centi G, Iaquaniello G, Mangiapane A, Perathoner S. Trading Renewable Energy by using CO2: An Effective Option to Mitigate Climate Change and Increase the use of Renewable Energy Sources. Energy Technol 2014;2:453–61.Google Scholar

  • 112. European Technology Platform for Zero Emission Fossil Fuel Power Plants. The Costs of CO2 Capture. Transport and Storage, 2011. Available at: www.zeroemissionsplatform.eu/ library/publication/165-zep-cost-report-summary.html.

  • 113. SPIRE (Sustainable Process Industry through Resource and Energy Efficiency). SPIRE Roadmap, 2014. Available at: http://www.spire2030.eu/uploads/Modules/Publications/spire-roadmap_december_2013_pbp.pdf.

  • 114. Centi G, Perathoner S. Green Carbon Dioxide: Advances in CO2 Utilization. Hoboken, NJ-US: Wiley & Sons, 2014.Google Scholar

  • 115. de Falco M, Iaquaniello G, Centi G. CO2: A valuable source of carbon, Heidelber, Germany: Springer, 2013.Google Scholar

  • 116. Abate S, Lanzafame P, Perathoner S, Centi G. New Sustainable Model of Biorefineries: Biofactories and Challenges of Integrating Bio- and Solar Refineries. ChemSusChem 2015;8:2854–66. Accepted. cssc.201500277R1.Google Scholar

  • 117. Schlögl R, editor. Chemical energy storage. Berlin, Germany: De Gruyter, 2013, Ch. 1:1–34.Google Scholar

  • 118. Schlögl R. The solar refinery. Green 2012;2:235–255.Google Scholar

  • 119. Abate S, Centi G, Lanzafame P, Perathoner S. The energy-chemistry nexus: A vision of the future from sustainability perspective. J Energy Chem 2015;24:535–47. (in press. JEC-15-07–23)1.CrossrefGoogle Scholar

  • 120. Sharifzadeh M, Wang L, Shah N. Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renew Sust Energy Rev 2015;47:151–61.Google Scholar

About the article

Salvatore Abate

Salvatore Abate took is degree in Materials Engineering at the University of Messina (Italy) in 2002 and his PhD in Chemistry and Materials Engineering in 2006 working on Palladium membranes for direct synthesis of hydrogen peroxide. He has worked in many EU projects in the area of Pd membrane, nanomaterials catalysts and sustainable chemical process. From 2012 he is researcher of industrial chemistry at the University of Messina. His recent research interests include Palladium membrane for gas separation, development of membrane reactors, nanostructured zeolites and hydrocracking of microalgae oil, and methanation reaction.

Gabriele Centi

Gabriele Centi completed his industrial chemistry studies at the University of Bologna (Italy) and is actually Professor of Industrial Chemistry at the University of Messina (Italy). He is vice-President of the European Federation of Catalysis Societies, and of the International Association of the Catalysis Societies. He was Coordinator of the European Network of Excellence on catalysis IDECAT. He chair the Editorial Board of ChemSusChem, and Chief Editor of J. Energy Chem., the book series Studies in Surface Science and Catalysis (Elsevier) and Green Energy (De Gruyter). His research interests lie in the development of industrial heterogeneous catalysts for sustainable chemical processes, environmental protection, and clean energy.

Siglinda Perathoner

Siglinda Perathoner took his degree in Chemistry at the University of Bologna (Italy) in 1984 and her PhD in Chemical Science in 1988 working on photophysics and photochemistry of supramolecular systems. From 2001 she joined the University of Messina and is associate professor of Industrial Chemistry presently. She has coordinated many EU projects in the area of nanomaterials, catalysts and sustainable chemical processes. Her recent research interests include nanostructured zeolites, catalytic membranes, catalysts for waste water purification and remediation, photo(electro)catalytic conversion of carbon dioxide, and fuel cells.

Received: 2015-08-17

Accepted: 2015-11-06

Published Online: 2015-12-16

Published in Print: 2015-12-01

Funding:The authors acknowledge the PRIN10-11 project “Mechanisms of activation of CO2 for the design of new materials for energy and resource efficiency” for the financial support and the EU IAPP project nr 324292 BIOFUR, in the frame of which part of this work was realized.

Citation Information: Green, Volume 5, Issue 1-6, Pages 43–54, ISSN (Online) 1869-8778, ISSN (Print) 1869-876X, DOI: https://doi.org/10.1515/green-2015-0011.

Export Citation

©2015 by De Gruyter Mouton.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Siglinda Perathoner and Gabriele Centi
Catalysis Today, 2018
Paola Lanzafame, Salvatare Abate, Claudio Ampelli, Chiara Genovese, Rosalba Passalacqua, Gabriele Centi, and Siglinda Perathoner
ChemSusChem, 2017
Stavros Lazarou and Sofoklis Makridis
Challenges, 2017, Volume 8, Number 1, Page 13
Chiara Genovese, Claudio Ampelli, Siglinda Perathoner, and Gabriele Centi
Green Chem., 2017, Volume 19, Number 10, Page 2406
Siglinda Perathoner, Silvia Gross, Emiel J. M. Hensen, Helge Wessel, Hélène Chraye, and Gabriele Centi
ChemCatChem, 2017, Volume 9, Number 6, Page 904
Alexander Navarrete, Gabriele Centi, Annemie Bogaerts, Ángel Martín, Andrew York, and Georgios D. Stefanidis
Energy Technology, 2017, Volume 5, Number 6, Page 796
Matthias Beller, Gabriele Centi, and Licheng Sun
ChemSusChem, 2017, Volume 10, Number 1, Page 6
S. Abate, K. Barbera, G. Centi, P. Lanzafame, and S. Perathoner
Catal. Sci. Technol., 2016, Volume 6, Number 8, Page 2485

Comments (0)

Please log in or register to comment.
Log in