Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Gestalt Theory

An International Multidisciplinary Journal

3 Issues per year

Open Access
See all formats and pricing
More options …

“Invariants” in Koffka’s Theory of Constancies in Vision: Highlighting Their Logical Structure and Lasting Value

Luigi Burigana / Michele Vicovaro
Published Online: 2017-03-31 | DOI: https://doi.org/10.1515/gth-2017-0004


By introducing the concept of “invariants”, Koffka (1935) endowed perceptual psychology with a flexible theoretical tool, which is suitable for representing vision situations in which a definite part of the stimulus pattern is relevant but not sufficient to determine a corresponding part of the perceived scene. He characterised his “invariance principle” as a principle conclusively breaking free from the “old constancy hypothesis”, which rigidly surmised point-to-point relations between stimulus and perceptual properties. In this paper, we explain the basic terms and assumptions implicit in Koffka’s concept, by representing them in a set-theoretic framework. Then, we highlight various aspects and implications of the concept in terms of answers to six separate questions: forms of invariants, heuristic paths to them, what is invariant in an invariant, roots of conditional indeterminacy, variability vs. indeterminacy, and overcoming of the indeterminacy. Lastly, we illustrate the lasting value and theoretical power of the concept, by showing that Koffka’s insights relating to it do occur in modern perceptual psychology and by highlighting its role in a model of perceptual transparency.

Keywords: Invariance principle; Constancy hypothesis; Stimulus insufficiency; Perceptual indeterminacy; Intra-perceptual dependence


  • Beck, J., Prazdny, K., & Ivry, R. (1984). The perception of transparency with achromatic colors. Perception & Psychophysics, 35(5), 407–422.CrossrefGoogle Scholar

  • Bergström, S. S. (1977). Common and relative components of reflected light as information about the illumination, colour, and three-dimensional form of objects. Scandinavian Journal of Psychology, 18(3), 180–186.CrossrefGoogle Scholar

  • Bloj, M. G., & Hurlbert, A. C. (2002). An empirical study of the traditional Mach card effect. Perception, 31(2), 233–246.CrossrefGoogle Scholar

  • Chen, L. (2005). The topological approach to perceptual organization. Visual Cognition, 12(4), 553–637.CrossrefGoogle Scholar

  • Cutting, J. E. (1986). Perception with an eye for motion. Cambridge, MA: MIT Press.Google Scholar

  • Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein & S. Rogers (Eds.), Perception of space and motion (pp. 69–117). New York, NY: Academic Press.Google Scholar

  • Da Pos, O., & Burigana, L. (2013). Qualitative inference rules for perceptual transparency. In L. Albertazzi (Ed.), Handbook of experimental phenomenology: Visual perception of shape, space and appearance (pp. 343–367). New York, NY: Wiley.Google Scholar

  • Dechter, R. (2003). Constraint processing. San Mateo, CA: Morgan Kaufmann.Google Scholar

  • Epstein, W. (1982). Percept-percept couplings. Perception, 11(1), 75–83.CrossrefGoogle Scholar

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar

  • Gilchrist, A. L. (2006). Seeing black and white. Oxford, UK: Oxford University Press.Google Scholar

  • Gilchrist, A. L., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spehar, B., Annan, V., & Economou, E. (1999). An anchoring theory of lightness perception. Psychological Review, 106(4), 795–834.Web of ScienceGoogle Scholar

  • Gogel, W. C. (1973). The organization of perceived space. I. Perceptual interactions. Psychologische Forschung, 36(3), 195–221.CrossrefGoogle Scholar

  • Gogel, W. C. (1976). An indirect method of measuring perceived distance from familiar size. Perception & Psychophysics, 20(6), 419–429.CrossrefGoogle Scholar

  • Hatfield, G. C. (2003). Representation and constraints: The inverse problem and the structure of visual space. Acta Psychologica, 114(3), 355–378.Google Scholar

  • Heidelberger, M. (2010). Functional relations and causality in Fechner and Mach. Philosophical Psychology, 23(2), 163–172.CrossrefGoogle Scholar

  • Hochberg, J. E. (1957). Effects of the Gestalt revolution: The Cornell symposium on perception. Psychological Review, 64(2), 73–84.Google Scholar

  • Jäkel, F., Singh, M., Wichmann, F. A., & Herzog, M. H. (2016). An overview of quantitative approaches in Gestalt perception. Vision Research, 126, 3–8.Web of ScienceGoogle Scholar

  • Johansson, G. (1970). On theories for visual space perception. A letter to Gibson. Scandinavian Journal of Psychology, 11(2), 67–74.CrossrefGoogle Scholar

  • Kersten, D., Mamassian, P., & Yuille, A. L. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.CrossrefGoogle Scholar

  • Koenderink, J. J., van Doorn, A. J., Pont, S., & Richards, W. (2008). Gestalt and phenomenal transparency. Journal of the Optical Society of America, Series A, 25(1), 190–202.CrossrefGoogle Scholar

  • Koffka, K. (1935). Principles of Gestalt psychology. New York, NY: Harcourt, Brace and Company.Google Scholar

  • Kogo, N., Strecha, C., van Gool, L., & Wagemans, J. (2010). Surface construction by a 2-D differentiation-integration process: A neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychological Review, 117(2), 406–439.Web of ScienceGoogle Scholar

  • Köhler, W. (1913). Über unbemerkte Empfindungen und Urteilstäuschungen. Zeitschrift für Psychologie, 66(Hefte 1 und 2), 51–80.Google Scholar

  • Marr, D. (1982). Vision. A computational investigation into the human representation and processing of visual information. San Francisco, CA: Freeman.Google Scholar

  • Metelli, F. (1970). An algebraic development of the theory of perceptual transparency. Ergonomics, 13(1), 59–66.CrossrefGoogle Scholar

  • Neapolitan, R. E. (2004). Learning Bayesian networks. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar

  • Oyama, T. (1969). S-S relations in psychophysics and R-R correlations in phenomenology. Psychologia, 12(1), 17–23.Google Scholar

  • Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317(No. 6035), 314–319.Google Scholar

  • Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.Google Scholar

  • Rock, I. (1997). Indirect perception. Cambridge, MA: MIT Press.Google Scholar

  • Sarris, V. (2006). Relational psychophysics in humans and animals: A comparative developmental approach. London, UK: Psychology Press.Google Scholar

  • Sarris, V. (2012). Epilogue: Max Wertheimer in Frankfurt and thereafter. In L. Spillmann (Ed.), On perceived motion and figural organization (pp. 253–265). Cambridge, MA: MIT Press.Google Scholar

  • Savardi, U., & Bianchi, I. (2012). Coupling Epstein’s and Bozzi’s “percept-percept coupling”. Gestalt Theory, 34(2), 191–200.Google Scholar

  • Sinico, M. (2013). Epistemic line of explanation for experimental phenomenology. Gestalt Theory, 35(4), 365–376.Google Scholar

  • Spillmann, L. (2012). The current status of Gestalt rules in perceptual research: Psychophysics and neurophysiology. In L. Spillmann (Ed.), On perceived motion and figural organization (pp. 191–251). Cambridge, MA: MIT Press.Google Scholar

  • Todd, J. T., Chen, L., & Norman, J. F. (1998). On the relative salience of Euclidean, affine, and topological structure for 3-D form discrimination. Perception, 27(3), 273–282.CrossrefGoogle Scholar

  • Trommershäuser, J., Körding, K. P., & Landy, M. S. (Eds.). (2011). Sensory cue integration. Oxford, UK: Oxford University Press.Google Scholar

  • Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012a). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6), 1172–1217.Google Scholar

  • Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm, P. A., & van Leeuwen, C. (2012b). A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychological Bulletin, 138(6), 1218–1252.Google Scholar

About the article

Published Online: 2017-03-31

Published in Print: 2017-03-01

Citation Information: Gestalt Theory, Volume 39, Issue 1, Pages 6–29, ISSN (Online) 2519-5808, DOI: https://doi.org/10.1515/gth-2017-0004.

Export Citation

© 2017 Luigi Burigana et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in