Albertazzi, L. (2002). Towards a neo-Aristotelian theory of continua: Elements of an empirical geometry. In L. Albertazzi (Ed.), Unfolding perceptual continua (pp. 29–80; esp. pp. 44–52). Amsterdam, Netherlands: Benjamins.Google Scholar
Albertazzi, L. (2006). Immanent realism: An introduction to Brentano. (pp. 233–268; esp. pp. 248–267). Dordrecht, Netherlands: Springer.Google Scholar
Albertazzi, L. (2015). Spatial elements in visual awareness. Challenges for an intrinsic “Geometry” of the visible. Philosophia Scientiæ, 19(3), 95–125.Google Scholar
Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 184–193.Google Scholar
Bakalis, N. (2005). Handbook of Greek philosophy: From Thales to the Stoics analysis and fragments. Victoria, BC, Canada: Trafford Publishing.Google Scholar
Bell, J. (2006). The continuous and the infinitesimal in mathematics and philosophy. Monza, Italy: Polimetrica.Google Scholar
Bell, J. (2009). Cohesiveness. Intellectica, 9(1), 51.Google Scholar
Bijl, P., Koenderink, J. J., & Toet, A. (1989). Visibility of blobs with a Gaussian luminance profile. Vision Research, 29(4), 447–456.CrossrefGoogle Scholar
Blum, M. (1967). A transformation for extracting new descriptors of shape. In W. Wathen-Dunn (Ed.), Models for the perception of speech and visual form (pp. 362–380). Cambridge, MA: MIT Press.Google Scholar
Boime, A. (1993). The art of the Macchia and the Risorgimento. Chicago and London: The University of Chicago Press.Google Scholar
Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(241), 177–178.Google Scholar
Brentano, F. (1974, [1874]). Psychologie vom empirischen Standpunkt. Leipzig, Germany: Duncker und Humblot. (English quotations from: “Psychology from an Empirical Standpoint”. New York: Humanities Press).Google Scholar
Brentano, F. (1988). Philosophical investigations on space, time and the continuum (Smith, Trans.). London, England: Croom Helm.Google Scholar
Broude, N. (1987). The Macchiaioli: Italian painters of the nineteenth century. New Haven and London: Yale University Press.Google Scholar
Brouwer, L. E. J. (1918). Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre. KNAW Verhandlungen, 5, 1–43.Google Scholar
Brown, J. W. (1977). Mind, brain and consciousness. New York, NY: Academic Press.Google Scholar
Cartan, É (1923). Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Annales Scientifiques de l’École Normale Supérieure, 40, 325–412.Google Scholar
Cateura, L. (1995). Oil painting secrets from a master. New York, NY: Watson & Guptill.Google Scholar
Chadwick, H. (1992). St. Augustine, Confessions. [orig. 397-400CE]. Oxford, England: Oxford University Press.Google Scholar
Dedekind, R. (1872). Stetigkeit und irrationale Zahlen. Braunschweig, Germany: Vieweg, p. 18.Google Scholar
Dunn, C. (1995). Conversations in paint, a notebook of fundamentals. New York, NY: Workman Publishing.Google Scholar
Ehrlich, P. (2006). The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences, 60(1), 1–121.CrossrefGoogle Scholar
Elkind, D. (1964). Studies in perceptual development II, part-whole. Child Development, 35(1), 81–90.CrossrefGoogle Scholar
Euclid. (1956, [fl. 300BCE]). The thirteen books of Euclid’s elements, (Translation and Commentaries by Heath, T. L.), Three volumes. New York, NY: Dover Publications.Google Scholar
Feynman, R. (1966). The character of physical law. Cambridge, MA: MIT Press.Google Scholar
Florack, L. (1997). Image structure. Dordrecht, Netherlands: Kluwer Academic.Google Scholar
Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.CrossrefGoogle Scholar
Giordano, P. (2001). Nilpotent infinitesimals and synthetic differential geometry in classical logic. In P. Schuster, U. Berger, & H. Osswald (Eds.), Reuniting the antipodes–constructive and nonstandard views of the continuum (pp. 75–92). Dordrecht, Netherlands: Kluwer.Google Scholar
Gödel, K. (1960, [1947]). What is Cantor’s continuum problem? The American Mathematical Monthly, 54, 515–525. (originally published in 1947, Page references are to the reprinting of the expanded 1960 version in Benacerraf and Putnam 1983, pp. 420–485).Google Scholar
Hartline, H. K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. The American Journal of Physiology, 121, 400–415.Google Scholar
Hilbert, D. (1980, [1899]). The foundations of geometry (2nd ed.). Chicago, IL: Open Court.Google Scholar
Hoffman, D. D. (2009). The interface theory of perception. In S. Dickinson, M. Tarr, A. Leonardis, & B. Schiele (Eds.), Object categorization: Computer and human vision perspectives (pp. 148–165). New York, NY: Cambridge University Press.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Neuroscience, 195, 215–243.Google Scholar
Husserl, E. (1991, [1893-1917]). On the phenomenology of the consciousness of internal time (1893-1917) (J. B. Brough, Trans.). Dordrecht, Netherlands: Kluwer.Google Scholar
Imbriano, V. (1868). La quinta promotrice 1878-1868: Appendici di Vittorio Imbriani. Napoli, Italy: Tipografia Napolitana.Google Scholar
Jacobs, T. S. (1986). Light for the Artist. NewYork, NY: Watson-Guptill.Google Scholar
Kandinsky, W. (1926). In W. Gropius & L. Moholy-Nagy (Eds.), Punkt und Linie zu Fläche. Bauhaus Bücher, Schriftleitung München, Germany: Verlag Albert Langen.Google Scholar
Kanizsa, G. (1980). Grammatica del vedere. Saggi su percezione e Gestalt. Bologna, Italy: IL Mulino.Google Scholar
Koenderink, J. J. (1984). The structure of images. Biological Cybernetics, 50, 363–370.CrossrefGoogle Scholar
Koenderink, J. J. (1988). Operational significance of receptive field assemblies. Biological Cybernetics, 58(3), 163–171.CrossrefGoogle Scholar
Koenderink, J. J. (1990). The brain a geometry engine. Psychological Research, 52(2–3), 122–127.Google Scholar
Koenderink, J. J. (1993). What is a “feature”? Journal of Intelligent Systems, 3(1), 49–82.Google Scholar
Koenderink, J. J. (2002). Continua in vision. In L. Albertazzi (Ed.), Unfolding perceptual continua, advances in consciousness research 41 (pp. 101–118). Amsterdam and Philadelphia: John Benjamins.Google Scholar
Koenderink, J. J. (2011). Vision as a user interface. In B. E. Rogowitz & T. N. Pappas (Eds.), Proceedings of SPIE-IS&T Electronic Imaging, SPIE, Vol. 7865: Human Vision and Electronic Imaging XVI (pp. 1–13). San Francisco: SPIE-IS&T.Google Scholar
Koenderink, J. J. (2014). The all seeing eye. Perception, 43, 1–6.CrossrefGoogle Scholar
Koenderink, J. J. (2015). Ontology of the mirror world. Gestalt Theory, 37(2), 119–140.Google Scholar
Koenderink, J. J., Albertazzi, L., van Doorn, A. J., van Ee, R., van de Grind, W. A., Kappers, A. M. L., … de Vries, S. (2010). Does monocular visual space contain planes? Acta Psychologica (Amst), 134(1), 40–47.Google Scholar
Koenderink, J. J., & Richards, W. A. (1988). Two-dimensional curvature operators. Journal of the Optical Society of America A, 5(7), 1136–1141.Google Scholar
Koenderink, J. J., & Van Doorn, A. J. (1990). Receptive field families. Biological Cybernetics, 63(4), 291–297.CrossrefGoogle Scholar
Koenderink, J. J., & Van Doorn, A. J. (1992a). Generic neighbourhood operators. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 597–605.CrossrefGoogle Scholar
Koenderink, J. J., & Van Doorn, A. J. (1992b). Receptive field assembly pattern specificity. Journal of Visual Communication and Image Representation, 3(1), 1–12.CrossrefGoogle Scholar
Koenderink, J. J., & van Doorn, A. J. (1997). Local image operators and iconic structure. In G. Sommer & J. J. Koenderink (Eds.), Proceedings of the AFPAC’97. Algebraic Frames for the Perception-Action Cycle (pp. 66–93). Berlin, Heidelberg: Springer.Google Scholar
Koenderink, J. J., van Doorn, A. J., & Pinna, B. (2015). Psychogenesis of Gestalt. Gestalt Theory, 37(3), 287–304.Google Scholar
Koenderink, J. J., van Doorn, A. J., Albertazzi, L., & Wagemans, J. (2015). Relief articulation techniques. Art & Perception, 3(2), 151–171.Google Scholar
Koenderink, J. J., van Doorn, A. J., Pinna, B., & Wagemans, J. (2016). Boundaries, transitions and passages. Art & Perception, 4(3), 185–204.Google Scholar
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York, NY: Freeman.Google Scholar
Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of Royal Society of London B, 207, 187–217.Google Scholar
Metzger, W. (1936). Gesetze des Sehens. Frankfurt am Main, Germany: W. Kramer & Co.Google Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco, CA: W. H. Freeman.Google Scholar
Panconi, T. (1999). Antologia dei Macchiaioli, La trasformazione sociale e artica nella Toscana di metà 800. Pisa, Italy: Pacini Editore.Google Scholar
Pasch, M. (1912). [first edition 1882], Vorlesungen uber neuere Geometrie (2nd ed.). Leipzig, Germany: B.G. Teubner, p. 21.Google Scholar
Photoshop. (2014). Adobe, Retrieved from http://www.adobe.com/mena_en/products/photoshop.html
Pinna, B. (2008). Watercolor illusion. Scholarpedia, 3(1), 5352.Google Scholar
Pinna, B. (2010). New Gestalt principles of perceptual organization: An extension from grouping to shape and meaning. Gestalt Theory, 32(1), 11–78.Google Scholar
Pinna, B. (2012). Perceptual organization of shape, color, shade and lighting in visual and pictorial objects. i-Perception, 3, 257–281.CrossrefGoogle Scholar
Pinna, B., & Albertazzi, L. (2011). From grouping to visual meanings: A new theory of perceptual organization. In L. Albertazzi, G. van Tonder, & D. Vishwanath (Eds.), Information in perception (pp. 288–344). Cambridge, MA: MIT Press.Google Scholar
Pinna, B., Brelstaff, G., & Spillmann, L. (2001). Surface color from boundaries: A new ‘watercolor’ illusion. Vision Research, 41, 2669–2676.CrossrefGoogle Scholar
Pinna, B., & Deiana, K. (2015). The syntax organization of shape and color and the laws of coloration in vision, art and biology. Art & Perception, 3(3), 319–345.Google Scholar
Pinna, B., & Grossberg, S. (2005). The watercolor illusion and neon color spreading: A unified analysis of new cases and neural mechanisms. Journal of the Optical Society of America A, 22, 2207–2221.Google Scholar
Pinna, B., & Reeves, A. (2006). Lighting, backlighting and watercolor illusions and the laws of figurality. Spatial Vision, 19, 341–373.Google Scholar
Pinna, B., Spillmann, L., & Werner, J. (2003). The watercolor effect: A new principle of grouping and figure-ground organization. Vision Research, 43, 43–52.CrossrefGoogle Scholar
Richards, W. R., & Bobick, A. (1988). Playing twenty questions with nature. In Z. W. Pylyshyn (Ed.), Computational processes in human vision: An interdisciplinary perspective (pp. 3–26). The Canadian Institute for Advanced Research Series in Artificial Intelligence. Norwood, NJ: Ablex Publishing.Google Scholar
Richards, W.R. (1982, December): How to play twenty questions with nature and win (M.I.T. A.I. Memo 660).Google Scholar
Riedl, R. (1975). Die Ordnung des Lebendigen. Systembedingungen der Evolution. Hamburg, Germany: Paul Parey.Google Scholar
Riemann, B. (2013). [Habilitationsvortrag 10. Juni 1854]. Über die Hypothesen, Welche der Geometrie zu Grunde Liegen. Berlin, Germany: Springer.Google Scholar
Roeper, P. (2006). The Aristotelian continuum. A formal characterization. Notre Dame Journal of Formal Logic, 47(2), 211–232.Google Scholar
Schrödinger, E. (1944). What is life?. Cambridge, UK: Cambridge University Press.Google Scholar
Spillmann, L. (1971). Foveal perceptive fields in the human visual system measured with simultaneous contrast in grids and bars. Pflügers Archiv, 326(4), 281–299.Google Scholar
Stevin, S. (1585). In A. J. E. M. Smeur (Ed.), De Thiende (p. 1965). Nieuwkoop, Netherlands: De Graaf.Google Scholar
Stoltz, O. (1883). Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes. Mathematische Annalen, 22, 504–519.CrossrefGoogle Scholar
ter Haar Romeny, B. M. (2003). Front-end vision and multi-scale image analysis. Dordrecht, Netherlands: Kluwer Academic.Google Scholar
Tinbergen, N. (1952). The curious behavior of the stickleback. Scientific American, 187(6), 22–26.Google Scholar
van Dalen, D. (1997). How connected is the intuitionistic continuum? The Journal of Symbolic Logic, 62(4), 1147–1150.CrossrefGoogle Scholar
Veronese, G. (1894). Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten gradliniger Einheiten in elementarer Form entwickelt (Uebersetzt von A. Schepp). Leipzig, Germany: B.G. Teubner.Google Scholar
von Uexküll, J. (1909). Umwelt und Innenwelt der Tiere. Berlin, Germany: Springer.Google Scholar
von Uexküll, J. (1920). Theoretische Biologie. Berlin, Germany: Springer.Google Scholar
Weber, E. H. (1846). Tastsinn und Gemeingefühl. In R. Wagner (Ed.), Handwörterbuch der Physiologie mit Rücksicht auf physiologische Pathologie (Band 3 ed., pp. 481–588). Braunschweig, Germany: Vieweg.Google Scholar
Wertheimer, M. (1922): Untersuchungen zur Lehre von der Gestalt, I: Prinzipielle Bemerkungen. Psychologische Forschung, 1, pp. 47–58. [Translated extract reprinted as “The general theoretical situation.” In W. D. Ellis (Ed.), (1938). A source book of Gestalt psychology (pp. 12–16). London, UK: Routledge & Kegan Paul Ltd.].Google Scholar
Wertheimer, M. (1923): Untersuchungen zur Lehre von der Gestalt, II. Psychologische Forschung, 4, pp. 301–350. [Translated as “Investigations on Gestalt principles, II. In L. Spillmann (Ed.), (2012). On motion and figure-ground organization (pp. 127–182). Cambridge, MA: M.I.T. Press].CrossrefGoogle Scholar
Weyl, H. (1925). On the current epistemological situation in mathematics [English translation of Die Heutige Erkenntnislage in der Mathematik, Symposion, 1, 1925–1927, 1–32.] In P. Mancosu (Ed.) (1998), pp. 123–142.Google Scholar
Comments (0)