Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Heterocyclic Communications

Editor-in-Chief: Strekowski, Lucjan

Ed. by Baumstark, Alfons L. / Saczewski, Jaroslaw / Stephens, Chad / Yamada, Hidetoshi

6 Issues per year


IMPACT FACTOR 2016: 0.542
5-year IMPACT FACTOR: 0.652

CiteScore 2016: 0.73

SCImago Journal Rank (SJR) 2016: 0.247
Source Normalized Impact per Paper (SNIP) 2016: 0.541


Online
ISSN
2191-0197
See all formats and pricing
More options …
Volume 19, Issue 3 (Jun 2013)

Issues

A general and efficient entry to asymmetric tetrazines for click chemistry applications

Danzhu Wang
  • Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weixuan Chen
  • Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
  • Present address: Department of Chemistry and Biochemistry Georgia Institute of Technology, 901 Atlantic Drive Atlanta, GA 30332-0400, USA.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yueqin Zheng
  • Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chaofeng Dai
  • Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lifang Wang
  • Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Binghe Wang
  • Corresponding author
  • Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-30 | DOI: https://doi.org/10.1515/hc-2013-0072

Abstract

The importance of click chemistry is widely recognized. Among all the known click reactions, those involving tetrazines represent the fastest click reactions reported and are generating a great deal of interest. However, there is no efficient entry to asymmetric tetrazines and those with strong electron withdrawing groups, which limits the development of this field. Herein, we report a general and efficient entry to asymmetric tetrazines with strongly electron withdrawing groups.

This article offers supplementary material which is provided at the end of the article.

Keywords: asymmetric; click chemistry; electron-withdrawing; tetrazine

References

  • [1]

    Kolb, H. C.; Finn, M.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021.CrossrefGoogle Scholar

  • [2]

    Huisgen, R. 1, 3-Dipolar Cycloadditions – Introduction, Survey, Mechanism. In 1, 3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed. Wiley: New York, 1984; 1–176.Google Scholar

  • [3]

    Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064.CrossrefGoogle Scholar

  • [4]

    Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. Bioconjugation by copper (I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193.CrossrefGoogle Scholar

  • [5]

    Lin, N.; Yan, J.; Huang, Z.; Altier, C.; Li, M.; Carrasco, N.; Suyemoto, M.; Johnston, L.; Wang, S.; Wang, Q. Design and synthesis of boronic-acid-labeled thymidine triphosphate for incorporation into DNA Nucleic Acids Res. 2007, 35, 1222–1229.Web of ScienceGoogle Scholar

  • [6]

    Yang, X.; Dai, C.; Molina, A. D. C.; Wang, B. Boronic acid-modified DNA that changes fluorescent properties upon carbohydrate binding. Chem. Commun. 2010, 46, 1073–1075.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    Dai, C.; Wang, L.; Sheng, J.; Peng, H.; Draganov, A. B.; Huang, Z.; Wang, B. The first chemical synthesis of boronic acid-modified DNA through a copper-free click reaction. Chem. Commun. 2011, 47, 3598–3600.CrossrefGoogle Scholar

  • [8]

    Lim, R. K.; Lin, Q. Bioorthogonal chemistry: recent progress and future directions. Chem. Commun. 2010, 46, 1589–1600.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Speers, G.; Adam, C.; Cravatt, B. F. Activity-based protein profiling in vivo using a copper (I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 4686–4687.CrossrefGoogle Scholar

  • [10]

    Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008, 320, 664–667.Web of ScienceGoogle Scholar

  • [11]

    Sletten, E. M.; Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 2009, 48, 6974–6998.Web of ScienceCrossrefGoogle Scholar

  • [12]

    Best, M. D. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 2009, 48, 6571–6584.Web of ScienceCrossrefGoogle Scholar

  • [13]

    Cheng, Y.; Peng, H.; Chen, W.; Ni, N.; Ke, B.; Dai, C.; Wang, B. Rapid and specific post‐synthesis modification of DNA through a biocompatible condensation of 1,2‐aminothiols with 2‐cyanobenzothiazole. Chem. Eur. J. 2013, 19, 4036–4042.Web of ScienceGoogle Scholar

  • [14]

    Devaraj, N. K.; Upadhyay, R.; Haun, J. B.; Hilderbrand, S. A.; Weissleder, R. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans‐cyclooctene cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 7013–7016.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    Liu, D. S.; Tangpeerachaikul, A.; Selvaraj, R.; Taylor, M. T.; Fox, J. M.; Ting, A. Y. Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. J. Am. Chem. Soc. 2012, 134, 792–795.Web of ScienceGoogle Scholar

  • [16]

    Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug. Chem. 2008, 19, 2297–2299.CrossrefGoogle Scholar

  • [17]

    Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA. 2007, 104, 16793–16797.CrossrefGoogle Scholar

  • [18]

    Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G. J. Visualizing metabolically labeled glycoconjugates of living cells by copper‐free and fast Huisgen cycloadditions. Angew. Chem. Int. Ed. 2008, 47, 2253–2255.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    Blackman, M. L.; Royzen, M.; Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130, 13518–13519.Web of ScienceGoogle Scholar

  • [20]

    Wiessler, M.; Waldeck, W.; Kliem, C.; Pipkorn, R.; Braun, K. The Diels-Alder-reaction with inverse-electron-demand, a very efficient versatile click-reaction concept for proper ligation of variable molecular partners. Int. J. Med. Sci. 2009, 7 , 19–28.Google Scholar

  • [21]

    Chen, W.; Wang, D.; Dai, C.; Hamelberg, D.; Wang, B. Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. Chem. Commun. 2012, 48, 1736–1738.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Molz, T; König, P.; Goes, R.; Gauglitz, G.; Meier, H. Kinetische Untersuchungen zu Diels‐Alder‐Reaktionen des Cyclooctins mit anschließender Aromatisierung. Chem. Ber. 2006, 117, 833–839.Google Scholar

  • [23]

    Karver, M. R.; Weissleder, R.; Hilderbrand, S. A. Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug. Chem. 2011, 22, 2263–2270.CrossrefGoogle Scholar

  • [24]

    Balcar, J.; Chrisam, G.; Huber, F. X.; Sauer J. Reaktivität von stickstoff-heterocyclen genenüber cyclooctin als dienophil. Tetrahedron Lett. 1983, 24, 1481–1484.CrossrefGoogle Scholar

  • [25]

    Sauer, J.; Heldmann, D. K. Ethynyltributyltin – a synthetic equivalent for acetylene, aryl, acyl and halogeno alkynes in [4+2] cycloadditions. Tetrahedron Lett. 1998, 39, 2549–2552.CrossrefGoogle Scholar

  • [26]

    Neunhoeffer, H.; Wiley, P. F. The Chemistry of Heterocyclic Compounds, Chemistry of 1,2,3-Triazines and 1,2,4-Triazines, Tetrazines, and Pentazin; Wiley-Interscience: New York, 2009.Google Scholar

  • [27]

    Sauer, J.; Heldmann, D. K.; Hetzenegger, J.; Krauthan, J.; Sichert, H.; Schuster, J. 1, 2, 4, 5‐Tetrazine: synthesis and reactivity in [4+2] cycloadditions. Eur. J. Org. Chem. 1998, 1998, 2885–2896.Google Scholar

  • [28]

    Yang, J.; Karver, M. R.; Li, W.; Sahu, S.; Devaraj, N. K. Metal-catalyzed one-pot synthesis of tetrazines directly from aliphatic nitriles and hydrazine. Angew. Chem. Int. Ed. 2012, 51, 5222–5225.CrossrefGoogle Scholar

  • [29]

    Robins, L. I.; Carpenter, R. D.; Fettinger, J. C.; Haddadin, M. J.; Tinti, D. S.; Kurth, M. J. Diazocinones: synthesis and conformational analysis. J. Org. Chem. 2006, 71, 2480–2485.CrossrefGoogle Scholar

  • [30]

    Han, H. S.; Devaraj, N. K.; Lee, J.; Hilderbrand, S. A.; Weissleder, R.; Bawendi, M. G. Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. J. Am. Chem. Soc. 2010, 132, 7838–7839.Web of ScienceGoogle Scholar

  • [31]

    Pipkorn, R.; Waldeck, W.; Didinger, B.; Koch, M.; Mueller, G.; Wiessler, M.; Braun, K. Inverse‐electron‐demand Diels‐Alder reaction as a highly efficient chemoselective ligation procedure: synthesis and function of a BioShuttle for temozolomide transport into prostate cancer cells. J. Pept. Sci. 2009, 15, 235–241.Web of ScienceCrossrefGoogle Scholar

  • [32]

    Gautun, O. R.; Carisen, P. Synthesis of bis (α-alkylaminobenzylidene) hydrazines and their transformation into 4-alky-4H-1,2,4-triazoles. Acta Chem. Scand. 1991, 45, 609–615.CrossrefGoogle Scholar

  • [33]

    Rao, G.-W.; Hu, W.-X. Synthesis, structure analysis, and antitumor activity of 3, 6-disubstituted-1,4-dihydro-1,2,4,5-tetrazine derivatives. Bioorg. Med. Chem. Lett. 2006, 16, 3702–3705.CrossrefGoogle Scholar

  • [34]

    Fox, J. M.; Hassink, M.; Blackman, M. L.; Li, Z.; Conti, P. Tetrazine-trans-cyclooctene ligation as the basis of PET/SPECT probes and radiotherapies; WIP Organization: USA, 2012.Google Scholar

  • [35]

    Erickson, J. G.; Wiley, P. F.; Wystrach, V. P. The 1,2,3- and 1,2,4-triazines, tetrazines and pentazines; Wiley: New York, 1956.Google Scholar

  • [36]

    Iwamoto, R. H.; Lim, P.; Bhacca N. S. The structure of daunomycin. Tetrahedron Lett. 1968, 9, 3891–3894.CrossrefPubMedGoogle Scholar

  • [37]

    Bowie, R. A.; Gardner, M. D.; Neilson, D. G.; Watson, K. M.; Mahmood, S.; Ridd, V. Studies on some symmetrically and unsymmetrically 3,6-disubstituted 1,2-dihydro- 1,2,4,5-tetrazines including their conversion into the corresponding tetrazines and 3,5-disubstituted 4-amino-1,2,4-triazoles. J. Chem. Soc. Perkin Trans. 1972, 1, 2395–2399.Google Scholar

About the article

Corresponding author: Binghe Wang, Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA


Received: 2013-05-06

Accepted: 2013-05-07

Published Online: 2013-05-30

Published in Print: 2013-06-01


Citation Information: Heterocyclic Communications, ISSN (Online) 2191-0197, ISSN (Print) 0793-0283, DOI: https://doi.org/10.1515/hc-2013-0072.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in