Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Heterocyclic Communications

Editor-in-Chief: Strekowski, Lucjan

Ed. by Baumstark, Alfons L. / Saczewski, Jaroslaw / Stephens, Chad / Yamada, Hidetoshi

6 Issues per year

IMPACT FACTOR 2017: 0.700

CiteScore 2017: 0.66

SCImago Journal Rank (SJR) 2017: 0.199
Source Normalized Impact per Paper (SNIP) 2017: 0.263

See all formats and pricing
More options …
Volume 21, Issue 1


Improved synthesis of 6-[(ethylthio)methyl]-1H-indazole

Agnès M. Sirven
  • CEMES-CNRS, BP 94347, 29 rue J. Marvig, F-31055 Toulouse, France
  • Université de Toulouse, UPS, 29 rue J. Marvig, F-31055 Toulouse, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman Stefak / Gwénaël Rapenne
  • Corresponding author
  • CEMES-CNRS, BP 94347, 29 rue J. Marvig, F-31055 Toulouse, France
  • Université de Toulouse, UPS, 29 rue J. Marvig, F-31055 Toulouse, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-10 | DOI: https://doi.org/10.1515/hc-2014-0180


In the improved synthesis of 6-[(ethylthio)methyl]-1H-indazole (5), the mesylate intermediate is replaced by the bromide derivative, which increases the overall yield (six steps) by a factor of 3.

This article offers supplementary material which is provided at the end of the article.

Keywords: bromide; indazoles; mesylate; protecting groups


  • [1]

    Atta-ur-Rahman; Malik, S.; Sadiq Hasan, S.; Iqbal Choudhary, M.; Ni, C. Z.; Clardy, J. Nigellidine – a new indazole alkaloid from the seeds of Nigella sativa. Tetrahedron Lett. 1995, 36, 1993–1996.CrossrefGoogle Scholar

  • [2]

    Bermudez, J.; Fake, C. S.; Joiner, G. F.; Joiner, K. A.; King, F. D.; Miner, W. D.; Sanger, G. J. 5-Hydroxytryptamine (5-HT3) receptor antagonists. 1. Indazole and indolizine-3-carboxylic acid derivatives. J. Med. Chem. 1990, 33, 1924–1929.Google Scholar

  • [3]

    Selwood, D. L.; Brummell, D. G.; Budworth, J.; Burtin, G. E.; Campbell, R. O.; Chana, S. S.; Charles, I. G.; Fernandez, P. A.; Glen, R. C.; Goggin, M. C.; et al. Synthesis and biological evaluation of novel pyrazoles and indazoles as activators of the nitric oxide receptor soluble guanylate cyclase. J. Med. Chem. 2001, 44, 78–93.Google Scholar

  • [4]

    Li, X.; Chu, S.; Feher, V. A.; Khalili, M.; Nie, Z.; Margosiak, S.; Nikulin, V.; Levin, J.; Sprankle, K. G.; Tedder, M. E.; et al. Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J. Med. Chem. 2003, 46, 5663–5673.CrossrefGoogle Scholar

  • [5]

    Groessl, M.; Reisner, E.; Hartinger, C. G.; Eichinger, R.; Semenova, O.; Timerbaev, A. R.; Jakupec, M. A.; Arion, V. B.; Keppler, B. K. Structure-activity relationships for NAMI-A-type complexes (HL) [trans-RuCl4L(S-dmso)ruthenate(III)] (L=imidazole, indazole, 1,2,4-Triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole): aquation, redox properties, protein binding, and antiproliferative activity. J. Med. Chem. 2007, 50, 2185–2193.CrossrefGoogle Scholar

  • [6]

    Trofimenko, S. Boron-pyrazole chemistry. J. Am. Chem. Soc. 1966, 88, 1842–1844.CrossrefGoogle Scholar

  • [7]

    Trofimenko, S. Scorpionates – Polypyrazolylborate Ligands and Their Coordination Chemistry; Imperial College Press: London, 1999.Google Scholar

  • [8]

    Pettinari, C.; Santini, C. In: Comprehensive Coordination Chemistry II; Lever, A. B. P., Ed. Elsevier: Amsterdam, 2003; Vol. 1, pp 159.Google Scholar

  • [9]

    Rheingold, A. L.; Haggerty, B. S.; Yap, G. P. A.; Trofimenko, S. Hydrotris(indazolyl)borates: homoscorpionates with tunable regiochemistry. Inorg. Chem. 1997, 36, 5097–5103.Google Scholar

  • [10]

    Munoz, B. K.; Ojo, W.-S.; Jacob, K.; Romero, N.; Vendier, L.; Despagnet-Ayoub, E.; Etienne, M. Perfluorinated 1H-indazoles and hydrotris(indazol-1-yl)borates. Supramolecular organization and a new synthetic procedure to form scorpionate ligands. New J. Chem. 2014, 38, 2451–2461.Google Scholar

  • [11]

    Perera, U. G. E.; Ample, F.; Echeverria, J.; Kersell, H.; Zhang, Y.; Vives, G.; Rapenne, G.; Joachim, C.; Hla, S.-W. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 2013, 8, 46–51.Web of ScienceGoogle Scholar

  • [12]

    Vives, G.; Launay, Gonzalez, A.; Jaud, J.; Launay, J.-P.; Rapenne, G. Synthesis of molecular motors incorporating bicyclo [2-2-2]insulating fragments. Chem. Eur. J. 2007, 13, 5622–5631.CrossrefGoogle Scholar

  • [13]

    Vives, G.; Rapenne, G. Directed synthesis of symmetric and dissymmetric molecular motors built around a ruthenium cyclopentadienyl tris(indazolyl)borate complex. Tetrahedron 2008, 64, 11462–11468.CrossrefGoogle Scholar

  • [14]

    Vives, G.; Jacquot de Rouville, H.-P.; Carella, A.; Launay, J.-P.; Rapenne, G. Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes. Chem. Soc. Rev. 2009, 38, 1551–1561.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    Lee, C.-H.; Zhang, Y.; Romayanantakit, A.; Galoppini, E. Molecular synthesis of ruthenium tripodal system with variable anchoring groups positions for semiconductor sensitization. Tetrahedron 2010, 66, 3897–3903.CrossrefGoogle Scholar

  • [16]

    Ronson, T. K.; Carruthers, C.; Fisher, J.; Brotin, T.; Harding, L. P.; Rizkallah, P. J.; Hardie, M. J. Tripodal 4-pyridyl-derived host ligands and their metallo-supramolecular chemistry: stella octangula and bowl-shaped assemblies. Inorg. Chem. 2010, 49, 675–685.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Ramachandra, S.; Schuermann, K. C.; Edafe, F.; Belser, P.; Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M.; De Cola, L. Luminescent ruthenium tripod complexes: properties in solution and on conductive surfaces. Inorg. Chem. 2011, 50, 1581–1591.CrossrefGoogle Scholar

  • [18]

    Carella, A.; Vives, G.; Cox, T.; Jaud, J.; Rapenne, G.; Launay, J.-P. Synthesis of new tripodal tri-functionalized hydrotris(indazol-1-yl)borate ligands and X-ray structures of their cyclopentadieneruthenium complexes. Eur. J. Inorg. Chem. 2006, 980–987.CrossrefGoogle Scholar

  • [19]

    Rüchardt, C.; Hassmann, V. Simplification of the Jacobson indazole-synthesis. Synthesis 1972, 375.CrossrefGoogle Scholar

  • [20]

    Rüchardt, C.; Sauer, J.; Sustmann, R. Rolf Huisgen: some highlights of his contribution to organic chemistry. Helv. Chim. Acta 2005, 88, 1154–1184.CrossrefGoogle Scholar

  • [21]

    Chiang, M.; Li, Y.; Krishnan, D.; Sumod, P.; Ng, K. H.; Leung, P.-H. Synthesis and characterisation of a novel chiral bidentate pyridine-n-heterocyclic carbene-based palladacycle. Eur. J. Inorg. Chem. 2010, 1413–1418.Web of ScienceCrossrefGoogle Scholar

  • [22]

    Klein, S. M.; Zhang, C.; Jiang, Y. L. Simple synthesis of alkyl iodides using alcohols and hydriodic acid. Tetrahedron 2008, 49, 2638–2641.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Gwénaël Rapenne, CEMES-CNRS, BP 94347, 29 rue J. Marvig, F-31055 Toulouse, France, e-mail: ; and Université de Toulouse, UPS, 29 rue J. Marvig, F-31055 Toulouse, France

Received: 2014-10-28

Accepted: 2014-11-25

Published Online: 2015-01-10

Published in Print: 2015-02-01

Citation Information: Heterocyclic Communications, Volume 21, Issue 1, Pages 5–8, ISSN (Online) 2191-0197, ISSN (Print) 0793-0283, DOI: https://doi.org/10.1515/hc-2014-0180.

Export Citation

©2015 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Frédéric Chérioux, Olivier Galangau, Frank Palmino, and Gwénaël Rapenne
ChemPhysChem, 2016, Volume 17, Number 12, Page 1742
Claire Kammerer and Gwénaël Rapenne
European Journal of Inorganic Chemistry, 2016, Volume 2016, Number 15-16, Page 2214

Comments (0)

Please log in or register to comment.
Log in