Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Heterocyclic Communications

Editor-in-Chief: Strekowski, Lucjan

Ed. by Baumstark, Alfons L. / Saczewski, Jaroslaw / Stephens, Chad / Yamada, Hidetoshi

6 Issues per year


IMPACT FACTOR 2016: 0.542
5-year IMPACT FACTOR: 0.652

CiteScore 2016: 0.73

SCImago Journal Rank (SJR) 2016: 0.247
Source Normalized Impact per Paper (SNIP) 2016: 0.541


Online
ISSN
2191-0197
See all formats and pricing
More options …
Volume 21, Issue 2 (Apr 2015)

Issues

Preparation of cysteine adducts by regioselective ring-opening reactions of phenyloxirane

Alena Moulisová
  • Institute of Chemical Technology, Faculty of Chemical Technology, Department of Organic Chemistry, Technická 1905, Prague CZ-166 28, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor Linhart
  • Corresponding author
  • Institute of Chemical Technology, Faculty of Chemical Technology, Department of Organic Chemistry, Technická 1905, Prague CZ-166 28, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-26 | DOI: https://doi.org/10.1515/hc-2015-0042

Abstract

Regioselective ring-opening reactions of phenyloxirane by protected cysteine are described, which enable the synthesis of pure regioisomeric cysteine adducts required for bioanalytical studies on adducts of protein with styrene. The reaction catalyzed by tris(pentafluorophenyl)borane proceeds regioselectively and stereospecifically to give protected S-(2-hydroxy-1-phenylethyl)cysteine (α-adduct) with the inversion of configuration at the α-carbon. By contrast, when the same reaction is catalyzed by tetraalkylammonium fluorides, S-(2-hydroxy-2-phenylethyl)cysteine (β-adduct) is formed predominantly, and a compete racemization is observed.

Keywords: cysteine adducts; oxirane ring opening; protein adducts; styrene; styrene oxide

References

  • [1]

    Osterman-Golkar, S.; Ehrenberg, D.; Segerbäck, D.; Hällström, I. Evaluation of genetic risks of alkylating agents. II. Haemoglobin as a dose monitor. Mutat. Res. 1976, 14, 1–10.CrossrefGoogle Scholar

  • [2]

    Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: state of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228.Google Scholar

  • [3]

    Törnqvist M.; Fred, C.; Haglund, J.; Helleberg, H.; Paulson, B.; Rydberg, P. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2002, 778, 279–308.Google Scholar

  • [4]

    Chasseaud, L. F. Nature and distribution of enzymes catalyzing the conjugation of foreign compounds with glutathione. Drug. Metab. Rev. 1973, 2, 185–220.PubMedGoogle Scholar

  • [5]

    Cnubben, N. H. P.; Reitjens, J. M. C.; Wortelboer, H.; van Zanden, J.; van Bladeren, J. The interplay of glutathione-related processes in antioxidant defense. Environ. Toxicol. Pharmacol. 2001, 10, 141–152.Google Scholar

  • [6]

    Cundari, S.; Dalpozzo, R.; De Nino, A.; Procopio, A.; Sindona, G.; Athanassopulos, K. A facile one-pot synthesis of the very useful building blocks N-Boc-S-alkylated cysteines. Tetrahedron 1999, 55, 10155–10162.Google Scholar

  • [7]

    Jágr, M.; Mráz, J.; Linhart, I.; Stránský, V.; Pospíšil, M. Synthesis and characterization of styrene oxide adducts with cysteine, histidine and lysine in human globin. Chem. Res. Toxicol. 2007, 20, 1442–1452.Google Scholar

  • [8]

    Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry. Oxford University Press: Oxford, 2001; pp. 513–514.Google Scholar

  • [9]

    Gao, P.; Xu, P.-F.; Zhai, H. Borax-catalyzed thiolysis of 1,2-epoxides in aqueous medium. Tetrahedron Lett. 2008, 49, 6536–6538.Web of ScienceGoogle Scholar

  • [10]

    Mukherjee, Ch.; Maiti, G. H.; Misra, A. K. Regioselective ring opening of epoxides with thiols in water. ARKIVOC 2008, 2008, 46–55.Google Scholar

  • [11]

    Khosropour, A. R.; Khodaei, M. M.; Ghozati, K. BiCl3 catalyzed thiolyzation of 1,2-epoxides with diaryl disulfides in the presence of zinc powder and ionic liquid. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 2525–2531.Google Scholar

  • [12]

    Yang, M.-H.; Yan, G.-B.; Zheng, Y.-F. Regioselective ring-opening reaction of 1,2-epoxides with thiols and arylselenols directly promoted by [Bmim]BF4. Tetrahedron Lett. 2008, 493, 6471–6474.Web of ScienceGoogle Scholar

  • [13]

    Rostami, A.; Jafari, H. S. NBS as a powerful catalyst for the synthesis of β-hydroxysulphides with thiolysis of epoxides under mild reaction conditions. Afr. J. Chem. 2008, 61, 115–118.Google Scholar

  • [14]

    Chandrasekhar, S.; Reddy, Ch. R.; Babu, B. N.; Chandrasekhar, G. Highly efficient cleavage of epoxides catalyzed by B(C6F5)3. Tetrahedron Lett. 2002, 43, 3801–3803.Google Scholar

  • [15]

    Yagen, B.; Hernandez, O.; Bend, J. R.; Cox, R. H. Chem. Biol. Interact. 1981, 34, 57–67.Google Scholar

  • [16]

    Cox, D. P.; Terpinski, J.; Lawrynowicz, W. ‘Anhydrous’ tetrabutylammonium fluoride: a mild but highly efficient source of nucleophilic fluoride ion. J. Org. Chem. 1984, 49, 3216–3219.Google Scholar

  • [17]

    Clark, J. H. Fluoride ion as a base in organic synthesis. Chem. Rev. 1980, 80, 429–452.Google Scholar

  • [18]

    Ihara, M.; Taniguchi, N.; Nogochi, K.; Fujumoto, K.; Kametani, T. Total synthesis of hydrocinchonidine and hydrocinchonine via photo-oxygenation of an indole derivative. J. Chem. Soc., Perkin Trans. 1, 1988, 1988, 1277–1281.Google Scholar

  • [19]

    Busnel, O.; Carreaux, F.; Carboni, B.; Pethe, S.; Goff, S. V.; Mansuy, D.; Boucher, J. L. Synthesis and evaluoation of new ω-borono-α-aminoacids as rat liver arginase inhibitors. Bioorg. Med. Chem. 2005, 13, 2373–2379.Google Scholar

  • [20]

    Kramer, J. R.; Deming, T. J. Glycopolypeptides with a redox-triggered helix-to-coil transition. J. Am. Chem. Soc. 2012, 134, 4112–4115.Web of ScienceGoogle Scholar

About the article

Corresponding author: Igor Linhart, Institute of Chemical Technology, Faculty of Chemical Technology, Department of Organic Chemistry, Technická 1905, Prague CZ-166 28, Czech Republic, e-mail:


Received: 2014-10-21

Accepted: 2015-02-26

Published Online: 2015-03-26

Published in Print: 2015-04-01


Citation Information: Heterocyclic Communications, ISSN (Online) 2191-0197, ISSN (Print) 0793-0283, DOI: https://doi.org/10.1515/hc-2015-0042.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jaroslav Mráz, Iveta Hanzlíková, Šárka Dušková, Ludmila Dabrowská, Hana Chrástecká, Radka Vajtrová, and Igor Linhart
Toxicology Letters, 2016, Volume 261, Page 26
[2]
Jaroslav Mráz, Iveta Hanzlíková, Alena Moulisová, Šárka Dušková, Kamil Hejl, Aneta Bednářová, Ludmila Dabrowská, and Igor Linhart
Chemical Research in Toxicology, 2016, Volume 29, Number 4, Page 676

Comments (0)

Please log in or register to comment.
Log in