Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Heterocyclic Communications

Editor-in-Chief: Strekowski, Lucjan

Ed. by Baumstark, Alfons L. / Saczewski, Jaroslaw / Stephens, Chad / Yamada, Hidetoshi

6 Issues per year

IMPACT FACTOR 2017: 0.700

CiteScore 2017: 0.66

SCImago Journal Rank (SJR) 2017: 0.199
Source Normalized Impact per Paper (SNIP) 2017: 0.263

See all formats and pricing
More options …
Volume 22, Issue 2


Chiral oxazoline ligands with two different six-membered azaheteroaromatic rings – synthesis and application in the Cu-catalyzed nitroaldol reaction

Ewa Wolińska
Published Online: 2016-03-18 | DOI: https://doi.org/10.1515/hc-2016-0001


Synthesis and catalytic activity of chiral ligands 5,6-diphenyl-3-{3-[(4S/R)-4-R/Ar-4,5-dihydro-1,3-oxazol-2-yl]pyridin-2-yl}amino-1,2,4-triazines 2 and their analogs 3 possessing an N-oxide function in the pyridine ring are described. The pivotal step in the synthesis of ligands 2 is the Buchwald-Hartwig Pd-catalyzed cross-coupling reaction between 3-bromo-5,6-diphenyl-1,2,4-triazine (7a) and enantiopure 3-(4,5-dihydro-1,3-oxazol-2-yl)pyridin-2-amines 6ad. Aromatic nucleophilic substitution of chlorine in 3-chloro-5,6-diphenyl-1,2,4-triazine (7b) with 3-(4,5-dihydro-1,3-oxazol-2-yl)pyridin-2-amine 1-oxides 12 was investigated as the key reaction in the synthesis of ligands 3. Two undesired derivatives 13 or 14, resulting from unexpected reactions of 3, were isolated depending on reaction conditions. Compounds 2 and 3 as well as the side products 13 and 14 were screened as chiral ligands in the copper catalyzed enatioselective nitroaldol reaction.

Keywords: asymmetric catalysis; Buchwald-Hartwig amination; chiral oxazoline ligands; enantioselective Henry reaction; 1,2,4-triazine


  • [1]

    Wolińska, E. Chiral oxazoline ligands containing a 1,2,4-triazine ring and their application in the Cu-catalyzed asymmetric Henry reaction. Tetrahedron 2013, 69, 7269–7278.CrossrefGoogle Scholar

  • [2]

    Wolińska, E. Asymmetric Henry reactions catalyzed by copper(II) complexes of chiral 1,2,4-triazine-oxazoline ligands: the impact of substitution in the oxazoline ring on ligand activity. Tetrahedron: Asymmetry 2014, 25, 1122–1128.Google Scholar

  • [3]

    Wolińska, E. A study of chiral oxazoline ligands with a 1,2,4-triazine and other six-membered aza-heteroaromatic rings and their application in Cu-catalysed asymmetric nitroaldol reactions. Tetrahedron: Asymmetry 2014, 25, 1478–1487.Google Scholar

  • [4]

    Karczmarzyk, Z.; Wolińska, E.; Fruziński, A. N-{2-[(4S)-4-tert-Butyl-4,5-dihydro-1,3-oxazol-2-yl]phenyl}-5,6-diphenyl-1,2,4-triazin-3-amine. Acta Cryst. 2011, E67, o651.Google Scholar

  • [5]

    Coeffard, V.; Müller-Bunz, H.; Guiry, P. J. The synthesis of new oxazoline-containing bifunctional catalysts and their application in the addition of diethylzinc to aldehydes. Org. Biomol. Chem. 2009, 7, 1723–1734.Web of ScienceGoogle Scholar

  • [6]

    Charushin, V. N.; Alekxeev, S. G.; Chupakhin, O. N.; Van der Plas, H. C. Behavior of monocyclic 1,2,4-triazines in reactions with C-, N-, O-, and S-nucleophiles. In Advances in Heterocyclic Chemistry. Katritzky, A. R., Ed. Academic Press, Inc.: New York, 1989; Vol. 46, pp 73–142.Google Scholar

  • [7]

    Wolińska, E. A convenient method of preparation of 3,3′-dichloro-5,5′-bi-1,2,4-triazine and its synthetic application. Heterocycles 2009, 78, 623–633.CrossrefGoogle Scholar

  • [8]

    Nyffenegger, C.; Fournet, G.; Joseph, B. Synthesis of 3-amino-5H-pyrrolo[2,3-e]-1,2,4-triazines by Sonogashira/copper(I)-catalyzed heteroannulation. Tetrahedron Lett. 2007, 48, 5069–5072.Google Scholar

  • [9]

    Pellegatti, L.; Vedrenne, E.; Leger, J.-M.; Jarry, C.; Routier, S. First efficient palladium-catalyzed aminations of pyrimidines, 1,2,4-triazines and tetrazines by original methyl sulfur release. Synlett 2009, 2137–2142.Web of ScienceGoogle Scholar

  • [10]

    Yang, B. H.; Buchwald, S. L. Palladium-catalyzed amination of aryl halides and sulfonates. J. Organomet. Chem. 1999, 576, 125–146.Google Scholar

  • [11]

    Hartwig, J. F. Discovery and understanding of transition-metal-catalyzed aromatic substitution reactions. Synlett 2006, 17, 1283–1294.CrossrefGoogle Scholar

  • [12]

    Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 2008, 41, 1534–1544.Web of ScienceGoogle Scholar

  • [13]

    Surry, D. S.; Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem., Int. Ed. 2008, 47, 6338–6361.Google Scholar

  • [14]

    Surry, D. S.; Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. 2011, 2, 27–50.Web of ScienceGoogle Scholar

  • [15]

    Fujisawa, T.; Ichiyanagi, T.; Shimizu, M. Enantioselective Diels-Alder reaction using chiral Lewis acid prepared from Grignard reagent and a chiral 2-(2-p-toluenesulfonylamino)phenyl-4-phenyloxazoline. Tetrahedron Lett. 1995, 36, 5031–5034.Google Scholar

  • [16]

    Radel, R. J.; Keen, B. T.; Wong, C.; Paudler, W. W. Syntheses, carbon-13 and proton nuclear magnetic resonance spectra of some 1,2,4-triazine 1- and 2-oxides. J. Org. Chem. 1977, 42, 546–550.Google Scholar

  • [17]

    Gant, T. G.; Meyers, A. I. The chemistry of 2-oxazolines. Tetraherdon 1994, 50, 2297–2360.CrossrefGoogle Scholar

  • [18]

    Wolińska, E. Sequential amination of heteroaromatic halides with aminopyridine 1-oxides and their N-protected derivatives based on novel aza-Smiles rearrangement. Heterocycl. Commun. 2012, 18, 227–232.Web of ScienceGoogle Scholar

  • [19]

    Wolińska, E.; Pucko, W. Diversity of reactions of isomeric aminopyridine N-oxides with chloronitropyridines: an experimental and theoretical study. J. Heterocyclic Chem., 2013, 50, 590–598.Web of ScienceGoogle Scholar

  • [20]

    Wu, W.; Cui, S.; Li, Z.; Liu, J.; Wang, H.; Wang, X.; Zhang, Q.; Wu, H.; Guo. K. Mild Brønsted acid initiated controlled polymerizations of 2-oxazoline towards one-pot synthesis of novel double-hydrophilic poly(2-ethyl-2-oxazoline)-block-poly(sarcosine). Polym. Chem. 2015, 6, 2970–2976.Google Scholar

  • [21]

    Wilsens, C. H. R. M.; Wullems, N. J. M.; Gubbels, E.; Yao, Y.; Rastogic, S.; Noordover, B. A. J. Synthesis, kinetics, and characterization of bio-based thermosets obtained through polymerization of a 2,5-furandicarboxylic acid-based bis(2-oxazoline) with sebacic acid. Polym. Chem. 2015, 6, 2707–2716.Google Scholar

  • [22]

    Rykowski, A. Synthesis of 1,2,4-triazin-3-yltrimethylammonium chlorides and 3-methanesulfonyl-1,2,4-triazines. Pol. J. Chem. 1983, 57, 631–635.Google Scholar

  • [23]

    Laakso, P. V.; Robinson, R.; Vandrewala, H. P. Studies in the triazine series including a new synthesis of 1, 2, 4-triazines. Tetrahedron 1957, 1, 103–118.CrossrefGoogle Scholar

About the article

Corresponding author: Ewa Wolińska, Department of Chemistry, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland

Received: 2016-01-03

Accepted: 2016-02-17

Published Online: 2016-03-18

Published in Print: 2016-04-01

Citation Information: Heterocyclic Communications, Volume 22, Issue 2, Pages 85–94, ISSN (Online) 2191-0197, ISSN (Print) 0793-0283, DOI: https://doi.org/10.1515/hc-2016-0001.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in