Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Helia


CiteScore 2018: 0.58

SCImago Journal Rank (SJR) 2018: 0.256
Source Normalized Impact per Paper (SNIP) 2018: 0.488

Online
ISSN
2197-0483
See all formats and pricing
More options …
Volume 39, Issue 64

Issues

Cold Stress Tolerance during Early Growth Stages of Naturalized Helianthus petiolaris Populations

Agustina Gutierrez / Miguel Cantamutto
  • CERZOS-CONICET, CP 8000 Bahía Blanca, Argentina
  • Department of Agronomy, Universidad Nacional del Sur, CP 8000 Bahía Blanca, Argentina
  • EEA INTA Ascasubi, CP 8142, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monica Poverene
  • CERZOS-CONICET, CP 8000 Bahía Blanca, Argentina
  • Department of Agronomy, Universidad Nacional del Sur, CP 8000 Bahía Blanca, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-11 | DOI: https://doi.org/10.1515/helia-2016-0007

Abstract

In the last 10 years the sunflower crop area of Argentina has shifted towards the Southwest as a result of the expansion of soybean cultivation. Early sowings require greater tolerance to low temperatures in order to optimize the use of water resources by the crop, especially in the seedling stage, when cold stress limits growth and productivity. Helianthus petiolaris is a wild genetic resource that has contributed to the production of sunflower cultivars. The goal of this study was to evaluate the tolerance to low temperatures in H. petiolaris plants. Morphological traits (plant height, leaf width and leaf length) and physiological traits (electrolyte leakage, chlorophyll content, and glucose content) were compared in eight accessions having an early germination in the field and one with normal life cycle. Acclimated and non-acclimated plants were subjected to cold stress followed by a recovery period. Physiological traits during early growth stages showed differences in cold tolerance and for acclimation ability between accessions, suggesting the existence of heritable components. Four accessions were the most cold-tolerant among the studied populations, suggesting a natural adaptation related to the geographical site. Results point out that H. petiolaris is a useful genetic resource to contribute to sunflower breeding in the search of cold tolerant cultivars.

Tolerancia al estrés por frío durante las etapas tempranas de crecimiento de poblaciones naturalizadas de Helianthus petiolaris

Resumen

En los últimos 10 años, la superficie de cultivo de girasol en Argentina se ha desplazado hacia el suroeste como resultado de la expansión del cultivo de soja. Siembras tempranas requieren una mayor tolerancia a las bajas temperaturas con el fin de optimizar el uso de los recursos de agua por el cultivo, especialmente en la etapa de plántula, cuando el estrés por frío limita el crecimiento y la productividad. Helianthus petiolaris es un recurso genético silvestre que ha contribuido a la producción de cultivares modernos de girasol. El objetivo de este estudio fue evaluar la tolerancia a las bajas temperaturas en plantas de H. petiolaris. Rasgos morfológicos (altura de la planta, ancho de la hoja y longitud de la hoja) y rasgos fisiológicos (fuga de electrolitos, contenido de clorofila, y contenido de glucosa) se compararon en ocho accesiones con germinación temprana en el campo y una accesión con ciclo de vida normal. Plantas aclimatadas y no aclimatadas fueron sometidas a estrés por frío seguido de un período de recuperación. Los rasgos fisiológicos mostraron diferencias en la tolerancia al frío durante las primeras etapas de crecimiento y para la capacidad de aclimatación entre accesiones, lo que sugiere la existencia de componentes hereditarios. Cuatro poblaciones fueron las más tolerantes al frío entre las accesiones estudiadas, lo que sugiere una adaptación natural relacionada con el lugar geográfico. Los resultados apuntan a que H. petiolaris es útil como recurso genético para contribuir a la mejora de girasol en la búsqueda de cultivares tolerantes al frío.

La tolérance du stress par froid dans les premières phases précoces de croissance de populations naturalisees de Helianthus petiolari

Résumé

Dans les 10 dernières années, la surface de culture de tournesol dans l’Argentine s’est déplacée vers le sud-ouest comme résultat de l’expansion de la culture de soja. Des semailles précoces requièrent une plus grande tolérance aux basses températures afin d’optimiser l’utilisation des ressources de l’eau par la culture, spécialement dans les première états de la plante, quand le stress par froid limite le croissance et la productivité. Helianthus petiolaris est un recours génétique sauvage qui a contribué dans la production de tu cultiveras modernes d’un tournesol. L’objectif de cette étude a été d’évaluer la tolérance aux basses températures aux plantes de H. petiolaris. Des traits morphologiques (hauteur de la plante, largeur de la feuille et la longueur de la feuille) et des traits physiologiques (s’enfuit des électrolytes, un contenu de chlorophylle, et contenu de glucose) ont été comparés dans huit consentements à une germination précoce dans le champ et un consentement à un cycle de vie normale. Des plantes acclimatées et non acclimatées ont été soumises à un stress par froid suivi d’une période de récupération. Les d’traits physiologiques ont montré des différences dans la tolérance au froid durant les premières étapes de croissance et pour la capacité d’acclimatation entre des consentements ce qui suggère l’existence de composants héréditaires. Quatre populations ont été les plus tolérantes au froid entre les consentements étudies ce qui suggère une adaptation naturelle relative au lieu géographique. Les résultats pointent qui H. petiolaris est utile comme recours génétique pour contribuer aux améliorations de tournesol dans la recherche de cultiveras tolérants au froid.

Keywords: acclimation; chlorophyll content; electrolyte leakage; glucose content; morphological traits

References

  • Allinne, C., Maury, P., Sarrafi, A., Grieu, P., 2009. Genetic control of physiological traits associated to low temperature growth in sunflower under early sowing conditions. Plant Science 177: 349–359.Google Scholar

  • Antikainen, M., Pihakaski, S., 1994. Early developments in RNA, protein, and sugar levels during cold stress in winter rye (Secale cereale) leaves. Annals of Botany 74: 335–341.Google Scholar

  • Asghari, A., Mohammadi, S., Moghaddam, M., Toorchi, M., Mohammadinasab, A., 2008. Analysis of quantitative trait loci associated with freezing tolerance in rapeseed (Brassica napus L. Biotechnol & Biotechnol eq 22/2008/1 548–552.

  • Badea, C., Basu, S.K., 2009. The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omics Journal 2: 78–84.Google Scholar

  • Baga, M., Chodaparambil, S., Limin, A., Pecar, M., Fowler, D., Chibbar, R., 2007. Identification of quantitative trait loci and associated candidate genes for low temperature tolerance in cold hardy winter wheat. Functional & Integrative Genomics 7: 53–68.Google Scholar

  • Baruah, A., Ishigo-Oka, N., Adachi, M., Oguma, Y., Tokizono, Y., Onishi, K., Sano, Y., 2009. Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica 165: 459–470.Google Scholar

  • Bhosale, S., Rymen, B., Beemster, G., Melchinger, A., Reif, J., 2007. Chilling tolerance of Central European Maize lines and their factorial crosses. Annals of Botany 100: 1315–1321.Google Scholar

  • Bogdanović, J., Mojović, M., Milosavić, N., Mitrović, A., Vučinić, Ž, Spasojević, I., 2008. Role of fructose in the adaptation of plants to cold-induced oxidative stress. European Biophysics Journal 37: 1241–1246.Google Scholar

  • Campos, P., Quartin, V., Cochicho, J., Nunes, M., 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal Plant Physiology 160: 283–292.Google Scholar

  • De la Vega, A.J., De Lacy, I.H., Chapman, S.C., 2007. Progress over 20 years of sunflower breeding in central Argentina. Field Crops Research 100: 61–72.Google Scholar

  • Demmig-Adams, B., Adams, W., 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Science 1: 21–26.Google Scholar

  • Di Rienzo, J.F., Casanoves, M., Balzarini, L., Gonzalez, M., Tablada, C., Robledo, C. 2011. InfoStat versión 2011. Grupo InfoStat, Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Argentina. http://www.infostat.com.ar.

  • Fryer, M., Oxborough, K., Martin, B., Ort, D., Baker, N., 1995. Factors associated with depression of photosynthetic quantum efficiency in maize at low growth temperature. Plant Physiology 108: 761–767.Google Scholar

  • Greer, D., Oqust, G., Ottander, C., 1991. Photoinhibition and recovery of photosynthesis in intact barley leaves at 5 °C and 20 °C. Physiology Plant 81: 203–210.Google Scholar

  • Groom, Q., Baker, N., 1992. Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant Physiology 100: 1217–1223.Google Scholar

  • Gutierrez, A., Carrera, A., Basualdo, J., Rodriguez, R., Cantamutto, M., Poverene, M., 2010a. Gene flow between cultivated sunflower and Helianthus petiolaris (Asteraceae). Euphytica 172: 67–76.Google Scholar

  • Gutierrez, A., Fernandez Moroni, I., Poverene, M., Cantamutto, M. 2010b. Evaluación de la tolerancia a bajas temperaturas en etapas tempranas de Helianthus anuales naturalizados en argentina. Actas XIV Congreso Latinoamericano de Genética (ALAG 2010): 297.

  • Guy, C., 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 41: 187–223.Google Scholar

  • Guy, C.L., Huber, J.L.A., Huber, S.C., 1992. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiology 100: 502–508.Google Scholar

  • Hannah, M.A., Wiesel, D., Freund, S., Fiehn, O., Heyer, A.G., Hincha, D.K., 2006. Natural genetic variation of freezing tolerance in arabidopsis. Plant Physiology 142: 98–112.Google Scholar

  • Haldimann, P., 1998. Low growth temperature-induced changes to pigment composition and hotosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant Cell Environment 21: 200–208.Google Scholar

  • Han-Yu, J., Wei, L., Bai-Jun, H., Yu-Hong, G., Jin-Xing, L., 2014. Sucrose metabolism in grape (Vitis vinifera L.) branches under low temperature during overwintering covered with soil. Plant Growth Regulation 72: 229–238.Google Scholar

  • Hawkins, T., Gardiner, E., Comer, G., 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal of Nature Conservation 17: 123–127.Google Scholar

  • Hernández, F., Presotto, A., Poverene, M., 2015. Respuesta al estrés térmico durante estadios tempranos en germoplasma silvestre y cultivado de Helianthus annuus L. Journal of Basic & Applied Genetics Suppl 26: 105.Google Scholar

  • Hoffmann, M.H., 2002. Biogeography of Arabidopsis thaliana (L.) Heynh (Brassicaceae). Journal of Biogeography 29: 125–134.Google Scholar

  • Jan, C., Seiler, G., 2007. Sunflower. In: Ram, J.S. (ed) Genetic Resources, Chromosome Engineering, and Crop Improvement, Volume 4: Oilseed Crops. CRC Press, Boca Raton, pp. 103–165.Google Scholar

  • Janska, A., Marsik, P., Zelenkova, S., Ovesna, J., 2010. Cold stress and acclimation - what is important for metabolic adjustment? Plant Biology 12: 395–405.Google Scholar

  • Kazemi, S., Reza, M.A., Hassan, Z., Mona, K., Alireza, T., Seyyedeh-Sanaz, R., 2014. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings Seyyedeh-Sanam. Journal Plant Physiology 171: 1106–1116.Google Scholar

  • Knoll, J., Gunaratna, N., Ejeta, G., 2008. QTL analysis of early-season cold tolerance in sorghum. Theoretical and Applied Genetics 116: 577–587.Google Scholar

  • Leipner, J., Fracheboud, Y., Stamp, P., 1999. Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environmental and Experimental Botany 42: 129–139.Google Scholar

  • Liu, W., Kenming, Y., Tengfei, H., Feifei, L., Dongxu, Z., Jianxia, L., 2013. The Low Temperature Induced Physiological Responses of Avena nuda L., a cold-tolerant plant species. Scientific World Journal. http://dx.doi.org/10.1155/2013/658793.Crossref

  • Lyons, J.M., 1973. Chilling injury in plants. Annual Review of Plant Biology 24: 445–466.Google Scholar

  • Mantoan Benetti, L., Ferreira, G., Fernandes Boaro, C., 2015. Chlorophyll a fluorescence in Annona emarginata (Schltdl.) H. Rainer plants subjected to water stress and after rehydration. Scientia Horticulturae 184: 23–30.Google Scholar

  • Maxted, N., Ford-Lloyd, B., Jury, S., Kell, S., Scholten, M., 2006. Towards a definition of a crop wild relative. Biodiversity Conservation Journal 15: 2673–2685.Google Scholar

  • Ntatsi, G., Savvas, D., Ntatsi, G., Kläring, H., Schwarz, D., 2014. Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. Journal of American Society of Horticultural Science 139: 230–243.Google Scholar

  • Okami, M., Yoichiro, K., Nobuya, K., Junko, Y., 2015. Morphological traits associated with vegetative growth of rice (Oryza sativa L.) during the recovery phase after early-season drought. European Journal of Agronomy 64: 58–66.Google Scholar

  • Peoples, T., Koch, D., Smith, S., 1978. Relationship between chloroplast membrane fatty acid composition and photosynthetic response to a chilling temperature in four alfalfa cultivars. Plant Physiology 61: 472–473.Google Scholar

  • Perras, M., Sarhan, F., 1984. Energy state of spring and winter wheat during cold hardening. Soluble sugars and adenine nucleotides. Physiology Plantarum 60: 129–132.Google Scholar

  • Pollet, B., Vanhaecke, L., Dambre, P., Lootens, P., Steppe, K., 2011. Low night temperature acclimation of Phalaenopsis. Plant Cell Reports 30: 1125–1134.Google Scholar

  • Ribeiro, P., Gonzaga Fernandez, L., Delmondez de Castro, R., Ligterink, W., Hilhorst, H., 2014. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: A metabolomics approach. BMC Plant Biology 14: 223.Google Scholar

  • Rieseberg, L.H., Linder, C., Seiler, G., 1995. Chromosomal and genic barriers to introgression in Helianthus. Genetics 141: 1163–1171.Google Scholar

  • Seiler, G., 1992. Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crop Research 30: 195–230.Google Scholar

  • Seiler, G., Rieseberg, L., 1997. Systematics, Origin, and Germplasm Resources of the Wild and Domesticated Sunflower. In: Schneiter, A. (ed) Sunflower Technology and Production, Chapter 2. American Society of Agronomy, Madison, WI, USA.Google Scholar

  • Shao, H.B., Chu, L.Y., Lu, Z.H., Kang, C.M., 2008. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. International Journal Biology Science 4: 8–14.Google Scholar

  • Shu, H.M., Zhou, Z.G., Xu, N.Y., Wang, Y.H., Zheng, M., 2009. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. European Journal Agronomy 31: 61–68.Google Scholar

  • Uemura, M., Joseph, R., Steponkus, P., 1995. Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiology 109: 15–30.Google Scholar

  • Uemura, M., Steponkus, P.L., 2003. Modification of the intracellular sugar content alters the incidence of freeze-induced membrane lesions of protoplasts isolated from Arabidopsis thaliana leaves. Plant Cell Environment 26: 1083–1096.Google Scholar

  • Ureta, M., Carrera, A., Cantamutto, M., Poverene, M., 2008. Gene flow among wild and cultivated sunflower, Helianthus annuus in Argentina. Agriculture, Ecosystems & Environment 123: 343–349.Google Scholar

  • Venema, J., Posthumus, F., de Vries, M., van Hasselt, P., 1999. Differential response of domestic and wild Lycopersicon species to chilling under low light: Growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiology Plant 105: 81–88.Google Scholar

  • Whitaker, B.D., 1993. Lipid changes in microsomes and crude plastid fractions during storage of tomato fruits at chilling and nonchilling temperatures. Phytochemistry 32: 265–271.Google Scholar

  • Yelenosky, G., Guy, C., 1989. Freezing tolerance of citrus, spinach, and petunia leaf tissue: Osmotic adjustment and sensitivity to freeze induced cellular dehydration. Plant Physiology 89: 444–451.Google Scholar

  • Yinghui, Z., Jundong, R., Liguang, C., Shuping, L., Tianyou, H., Lingyan, C., Yushan, Z., 2013. Response of chlorophyll fluorescence parameters to different temperature stresses in Prunus campanulata Maxim. and Prunus yedoensis Matsum. seedlings. Journal of Food, Agriculture and Environment 11: 2797–2802.Google Scholar

  • Yuchan, Z., Xiaoping, P., Hongxia, Q., Underhill, S., 2014. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. Journal of Bioenergetics and Biomembranes 46: 59–69.Google Scholar

  • Zhang, X.D., Wang, R.P., Zhang, F.J., Tao, F.Q., Li, W.Q., 2013. Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana. Biologia Plantarum 57: 149–153.Google Scholar

  • Zhi-Hong, Z., Li, S., Wei, L., Wei, C., Ying-Guo, Z., 2005. A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L. Plant Science 168: 527–534.Google Scholar

About the article

Received: 2016-03-15

Accepted: 2016-04-27

Published Online: 2016-05-11

Published in Print: 2016-07-01


Funding: This research was funded by National Agency for Promoting Science and Technology of Argentina, ANPCYT PICT 2854.


Citation Information: Helia, Volume 39, Issue 64, Pages 21–43, ISSN (Online) 2197-0483, ISSN (Print) 1018-1806, DOI: https://doi.org/10.1515/helia-2016-0007.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in