Jump to ContentJump to Main Navigation
Show Summary Details
More options …


2 Issues per year

CiteScore 2017: 0.59

SCImago Journal Rank (SJR) 2017: 0.427
Source Normalized Impact per Paper (SNIP) 2017: 0.658

See all formats and pricing
More options …
Volume 40, Issue 66

Somatic Embryogenesis from Corolla Tubes of Interspecific Amphiploids between Cultivated Sunflower (Helianthus annuus L.) and Its Wild Species

Xuelin Fu
  • Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lili Qi
  • USDA-ARS, Red River Valley Agricultural Research Center, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brent Hulke
  • USDA-ARS, Red River Valley Agricultural Research Center, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerald Seiler
  • USDA-ARS, Red River Valley Agricultural Research Center, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chao-Chien Jan
  • Corresponding author
  • USDA-ARS, Red River Valley Agricultural Research Center, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-02 | DOI: https://doi.org/10.1515/helia-2017-0006


Somatic embryogenesis in vitro provides an efficient means of plant multiplication, facilitating sunflower improvement and germplasm innovation. In the present study, using interspecific amphiploids (2n=4x=68) between cultivated sunflower and wild perennial Helianthus species as explant donors, somatic embryos were induced directly from the surface of corolla tubes at the late uninucleate or binucleate microspore development stage. Primary somatic embryos (PSEs) were obtained in amphiploids G08/2280 (H. pumilus×P21) and G08/2260 (NMSHA89×H. maximiliani). The PSE induction frequency of G08/2280 on synthesized Medium A and B was 30.27 % and 42.42 %, respectively, while that of G08/2260 was 5.89 % and 12.16 %, respectively. The difference of PSE induction frequency was significant between G08/2280 and G08/2260 (P=0.0058), but was non-significant between induction Medium A and B (P=0.1997). Secondary somatic embryos (SSEs) were rapidly produced from PSEs on subculture Medium 1 with the induction frequency of 100 %. The mean number of SSEs produced from each PSE was 19.2 and 12.2 in G08/2280 and G08/2260 within 30 d of subculture, respectively. Mature SSEs were gradually converted into young shoots on hormone-free subculture Medium 2, with the mean number of small green shoots produced from each PSE of 22.0 and 18.7 in G08/2280 and G08/2260, respectively. Through the additional process of rooting for some shoots without roots on half-strength of MS medium adding 0.25–0.5 mg/l NAA, 0.5 mg–1.0/l IBA, SE-derived shoots without roots gained about 40 % rooting frequency. Regenerated plants acclimated successfully and displayed similar morphological and chromosome number to the amphiploid donors.

Keywords: sunflower; interspecific amphiploid; corolla tube; somatic embryogenesis


  • Alexander, M.P., 1969. Differential staining of aborted and non-aborted pollen. Stain Technology 44: 117–122.CrossrefGoogle Scholar

  • Alibert, G., Aslane-Chanabe, J.C., Burrus, M., 1994. Sunflower tissue and cell cultures and their use in biotechnology. Plant Physiology a Nd Biochemistry 32: 31–44.Google Scholar

  • Atlagic, J., 2004. Roles of interspecific hybridization and cytogenetic studies in sunflower breeding. Helia 27(41): 1–24.CrossrefGoogle Scholar

  • Baker, C.M., Munoz-Fernandez, N., Carter, C.D., 1999. Improved shoot development and rooting from mature cotyledons of sunflower. Plant Cell Tissue Organ Culture 58: 39–49.CrossrefGoogle Scholar

  • Bolandi, A.R., Branchard, M., Alibert, G., Gentzbittel, L., Berville, A., Sarrafi, A., 2000. Combining ability analysis of somatic embryogenesis from epidermic layers in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics 100: 621–624.CrossrefGoogle Scholar

  • Burrus, M., Molinier, J., Himber, C., Hunold, R., Bronner, R., Rousselin, P., Hahne, G., 1996. Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) shoot apices: Transformation patterns. Molecular Breeding 2: 329–338.CrossrefGoogle Scholar

  • Carola Fiore, M., Trabace, T., Sunseri, F., 1997. High frequency of plant regeneration in sunflower from cotyledon via somatic embryogenesis. Plant Cell Reports 16: 295–298.CrossrefGoogle Scholar

  • Ceriani, M.F., Hopp, H.E., Hahne, G., Escandon, A.S., 1992. Cotyledons: An explant for routine regeneration of sunflower plants. Plant Cell Physiology 33: 157–164.Google Scholar

  • Chandler, J.H., Beard, B.H., 1983. Embryo culture of Helianthus hybrids. Crop Science 23: 1004–1006.CrossrefGoogle Scholar

  • Chen, L.Z., Lou, Q.F., Zhuang, Y., Chen, J.F., Zhang, X.Q., Woluka, J.N., 2007. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumishytivus. Planta 225: 603–614.CrossrefGoogle Scholar

  • Cheng, M.J., Zheng, M.M., Yang, S.P., Li, Y., Dong, X.C., Li, J., Sun, R.L., Li, H.X., Zhou, S.F., Wu, Y.Q., Rong, T.Z., Tang, Q.L., 2016. The effect of different genome and cytoplasm on meiotic pairing in maize newly synthetic polyploids. Euphytica 207: 593–603.CrossrefGoogle Scholar

  • Chester, M., Gallagher, J.P., Vaughan Symonds, V., Veruska Cruz Da Silva, A., Mavrodiev, E.V., Leitch, A.R., Soltis, P.S., Soltis, D.E., 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus. Proceedings of the National Academy of Sciences of the United States of America 109: 1176–1181.CrossrefGoogle Scholar

  • Chraîbi, M.B., Castelle, J.C., Latche, A., Roustan, J.P., Fallot, J., 1992. A genotype-independent system of regeneration from cotyledons of sunflower (Helianthus annuus L.). The role of ethylene. Plant Science 89: 215–221.CrossrefGoogle Scholar

  • Dağüstü, N., Fraser, P., Enfıssi, E., Bramley, P., 2008. Screening for high callus induction and agrobacterium- mediated transformation of sunflower (Helianthus Annuus L.). Biotechnology and Biotechnological Equipment 22: 933–937.Google Scholar

  • Dewey, D.R., 1980. Some applications and misapplications of induced polyploidy to plant breeding. In: Lewis, W.H. (ed.) Polyploid: Biological Relevance. Plenum Publishing Corporation, New York, pp. 445–470.Google Scholar

  • El Mostafa, N., Fakiri, M., Benchekroun, M., Amzil, J., El Arbaoui, A., Hilali, S., 2008. Effect of plant growth regulators on somatic embryogenesis from leaf in vitro cultures of Helianthus tuberosus L. Journal of Food Agriculture and Environment 6: 213–216.Google Scholar

  • Escandon, A.S., Hahne, G., 1991. Genotype and composition of culture medium are factors important in the selection for transformed sunflower (Helianthus annum) callus. Physiologia Plantarum 81: 367–376.CrossrefGoogle Scholar

  • Espinasse, A., Lay, C., 1989. Shoot regeneration of callus derived from globular to torpedo embryos from 59 sunflower genotypes. Crop Science 29: 201–205.CrossrefGoogle Scholar

  • Espinasse, A., Lay, C., Volin, J., 1989. Effects of growth regulator concentrations and explant size on shoot organogenesis from callus derived from zygotic embryos of sunflower (Helianthus annuus L.). Plant Cell Tissue Organ Culture 17: 171–181.CrossrefGoogle Scholar

  • Fambrini, M., Cionini, G., Pugliese, C., 1996. Development of somatic embryos from morphogenetic cells of the interspecific hybrid Helianthus annuusHelianthus tuberosus. Plant Science 114: 205–214.CrossrefGoogle Scholar

  • Faure, N., Serieys, H., Bervillé, A., Kaan, E.C., 2002. Occurrence of partial hybrids in wide crosses between sunflower (Helianthus annuus) and perennial species H. mollis and H. orgyalis. Theoretical and Applied Genetics 104: 652–660.CrossrefGoogle Scholar

  • Finer, J.J., 1987. Direct somatic embryogenesis and plant regeneration from immature embryos of hybrid sunflower (Helianthus annuus L.) on a high sucrose-containing medium. Plant Cell Reports 6: 372–374.CrossrefGoogle Scholar

  • Flores Berrios, E., Gentzbittel, L., Kayyal, H., Alibert, G., Sarrafi, A., 2000b. AFLP Mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics 101: 1299–1306.CrossrefGoogle Scholar

  • Flores Berrios, E., Sarrafi, A., Fabre, F., Alibert, G., Gentzbittel, L., 2000a. Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.). Theoretical and Applied Genetics 101: 1307–1312.CrossrefGoogle Scholar

  • Freyssinet, M., Freyssinet, G., 1988. Fertile plant regeneration from sunflower (Helianthus annuus L.) immature embryos. Plant Science 56: 177–181.CrossrefGoogle Scholar

  • Gavrilova, V.A., Tolstaya, T.T., Rozhkova, V.T., 1997. Analysis of interspecific hybrids resulting from crosses between perennial wild Helianthus species and the cultivated sunflower. In: FAO Progress Report 1995–1996, March 20–22, 1997, Giessen, Germany, FAO, Rome, Italy, pp. 75–80.Google Scholar

  • Geipel, K., Song, X., Socher, M.L., Kümmritz, S., Püschel, J., Bley, T., Ludwig-Müller, J., Steingroewer, J., 2014. Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved α-tocopherol production. Applied Microbiology Biotechnology 98: 2029–2040.CrossrefGoogle Scholar

  • Geng, X.X., Chen, S., Astarini, I.A., Yan, G.J., Tian, E., Meng, J., Li, Z.Y., Ge, X.H., Nelson, M.N., Mason, A.S., Pradhan, A., Zhou, W.J., Cowling, W.A., 2013. Doubled haploids of novel trigenomic Brassica derived from various interspecific crosses. Plant Cell Tissue Organ Culture 113: 501–511.CrossrefGoogle Scholar

  • Gômez-Sânchez, D., Gonzâlez, S., 1991. Exploration and collection of wild species from the genus Helianthus from Northern Mexico. Helia 14: 49–54.Google Scholar

  • Greco, B., Tanzorella, O.A., Carrozzo, G., Bianco, A., 1984. Callus induction and shoot regeneration in sunflower (Helianthus annuus L.). Plant Science Letters 36: 73–77.CrossrefGoogle Scholar

  • Hollister, J.D., 2015. Polyploidy: Adaptation to the genomic environment. New Phytologist 205: 1034–1039.CrossrefGoogle Scholar

  • Hulke, B.S., Kleingartner, L.W., 2014. Sunflower. In: Smith, S., Diers, B., Specht, J., Carver, B. (eds.) Yield Gains in Major US Field Crops, Volume 33, CSSA Special Publications, Madison433–457.Google Scholar

  • Jan, C.C., 1988. Chromosome doubling of wild × cultivated sunflower interspecific hybrids and its direct effect on backcross success. In Proceedings of 12th International Sunflower Conference, Novi Sad, Yugoslavia, July 25–29, 1988. International Sunflower Association, Paris, France287–292.Google Scholar

  • Jan, C.C., 1996. Developing unique interspecific germplasm for sunflower improvement. In Proceedings of 14th International Sunflower Conference, Beijing/Shenyang, PR China, June 12–20, 1996. International Sunflower Association, Paris, France1111–1116.Google Scholar

  • Jan, C.C., Chandler, J.M., Wagner, S.A., 1988. Induced tetraploid and trisomic production of Helianthus annuus L. Genome 30: 647–651.CrossrefGoogle Scholar

  • Jeannin, G., Bronner, R., Hahne, G., 1995. Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annuus L.) cultivated in vitro: Role of the sugar. Plant Cell Reports 15: 200–204.CrossrefGoogle Scholar

  • Knittel, N., Escandon, A.S., Hahne, G., 1991. Plant regeneration at high frequency from mature sunflower cotyledons. Plant Science 73: 219–226.CrossrefGoogle Scholar

  • Laferrière, J.E., 1986. Interspecific hybridization in sunflowers: An illustration of the importance of wild genetic resources in plant breeding. Outlook on Agriculture 15: 104–129.Google Scholar

  • Laparra, H., Bronner, R., Hahne, G., 1997. Histological analysis of somatic embryogenesis induced in leaf explants of Helianthus smithii Heiser. Protoplasma 196: 1–11.CrossrefGoogle Scholar

  • Litz, R.E., Gray, D.J., 1992. Organogenesis and somatic embryogenesis. In Hammerschlag, F.A., Litz, R.E. (eds.) Biotechnology of Perennial Fruit Crops. CAB International, Wallingford, UK3–34.Google Scholar

  • Liu, H.X., Xie, X.D., Sun, S.J., Zhu, W.B., Ji, J., Wang, G., 2011. Optimization of Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) immature embryos. Australian Journal of Crop Science 5: 1616–1621.Google Scholar

  • Morel, G.M., Wetmore, R.H., 1951. Tissue culture of monocotyledons. American Journal of Botany 38: 138–140.CrossrefGoogle Scholar

  • Muller, A., Iser, M., Hess, D., 2001. Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker. Transgenic Research 10: 435–444.CrossrefGoogle Scholar

  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 495–497.CrossrefGoogle Scholar

  • Nestares, G., Zorzoli, R., Mroginski, L., Picardi, L., 1996. Plant regeneration from cotyledons derived from mature sunflower seeds. Helia 19: 107–112.Google Scholar

  • Paterson, K.E., Everett, N.P., 1985. Regeneration of Helianthus annuus inbred plants from callus. Plant Science 42: 125–132.CrossrefGoogle Scholar

  • Pélissier, B., Bouchefra, O., Pépin, R., Freyssinet, G., 1990. Production of isolated somatic embryos from sunflower thin cell layer. Plant Cell Reports 9: 47–50.CrossrefGoogle Scholar

  • Power, C.J., 1987. Organogenesis from Helianthus annuus inbreds and hybrids from the cotyledons of zygotic embryos. American Journal of Botany 74: 497–503.CrossrefGoogle Scholar

  • Pugliesi, C., Biasini, M.G., Fambrini, M., Baroncelli, S., 1993a. Genetic transformation by Agrobacterium tumefaciens in the interspecific hybrid Helianthus annuus × Helianthus tuberosus. Plant Science 93: 105–115.CrossrefGoogle Scholar

  • Pugliesi, C., Cecconi, F., Mandolfo, A., Baroncelli, S., 1991. Plant regeneration and genetic variability from tissue cultures of sunflower (Helianthus annuus L,). Plant Breeding 106: 114–121.CrossrefGoogle Scholar

  • Pugliesi, C., Megale, P., Cecconi, F., Baroncelli, S., 1993b. Organogenesis and embryogenesis in Helianthus tuberosus and in the interspecific hybrid Helianthus annuus × Helianthus tuberosus. Plant Cell Tissue Organ Culture 33: 187–193.CrossrefGoogle Scholar

  • Ruso, J., Sukno, S., Domínguez-Giménez, J., Melero-Vara, J.M., Fernández-Martínez, J.M., 1996. Screening of wild Helianthus species and derived lines for resistance to several populations of Orobanche cernua. Plant Disease 80: 1165–1169.CrossrefGoogle Scholar

  • Seiler, G.J., Rieseberg, L.H., 1997. Systematics, origin and germplasm resources of the wild and domesticated sunflower. In Schneiter, A. (ed.) Sunflower Technology and Production. American Society of Agronomy, Madison, Wisconsin21–26.Google Scholar

  • Skoric, D., 1992. Achievements and future directions of sunflower breeding. Field Crops Research 30: 231–270.CrossrefGoogle Scholar

  • Sujatha, M., Vijay, S., Vasavi, S., Sivaraj, N., Rao, S.C., 2012. Combination of thidiazuron and 2-isopentenyladenine promotes highly efficient adventitious shoot regeneration from cotyledons of mature sunflower (Helianthus annuus L.) seeds. Plant Cell Tissue Organ Culture 111: 359–372.CrossrefGoogle Scholar

  • Sukno, S., Ruso, J., Jan, C.C., Melero-Vara, J.M., Fernández-Martínez, J.M., 1999. Interspecific hybridization between sunflower and wild perennial Helianthus species via embryo rescue. Euphytica 106: 69–78.CrossrefGoogle Scholar

  • Talapatra, S., Goswami, P., Das, S., Raychaudhuri, S.S., 2015. Role of SERK during somatic embryogenesis and its interaction with Brassinosteroids. In Mujib, A. (ed.) Somatic Embryogenesis in Ornamentals and Its Applications. Springer (India) Pvt. Ltd., 141–154.Google Scholar

  • Taski-Ajdukovic, K., Nagl, N., Miladinovic, D., 2010. Towards reducing genotype specificity in regeneration protocols after somatic hybridization between cultivated sunflower and wild Helianthus species. Acta Biologica Hungarica 61: 214–223.CrossrefGoogle Scholar

  • Taski-Ajdukovic, K., Vasic, D., Nagl, N., 2006. Regeneration of interspecific somatic hybrids between Helianthus annuus L. and Helianthus maximiliani (Schrader) via protoplast electrofusion. Plant Cell Reports 25: 698–704.CrossrefGoogle Scholar

  • Thompson, T., Zimmerman, D., Rogers, C., 1981. Wild Helianthus as a genetic resource. Field Crops Research 4: 333–343.CrossrefGoogle Scholar

  • Vega, T.A., Nestares, G.M., Pratta, G., Zorzoli, R., Gattuso, S., Picardi, L., 2007. Biochemical and histological changes associated with in vitro responses in sunflower cotyledonary explants. In Vitro Cellular and Developmental Biology-Plant 43: 415–422.Google Scholar

  • Vega, T.A., Nestares, G.M., Zorzoli, R., Picardi, L., 2006. Responsive regions for direct organogenesis in sunflower cotyledons. Acta Physiologiae Plantarum 28: 427–432.CrossrefGoogle Scholar

  • Wang, Y., Li, C., Zhang, Y., Chen, Y., Zhao, L., Yue, P., Teng, X., Wang, N., 2011. Establishing the regeneration system of sunflower. Sheng Wu Gong Cheng Xue Bao (Chinese Journal of Biotechnology) 27: 1379–1389. [Article in Chinese with English abstract].Google Scholar

  • Wilcox Mccann, A., Cooly, G., Van Dresser, J., 1988. A system for routine plantlet regeneration of sunflower (Helianthus annuus L.) from immature embryo-derived callus. Plant Cell Tissue Organ Culture 14: 103–110.CrossrefGoogle Scholar

  • Wirtzens, B., Scowcroft, W.R., Downes, R.W., Larkin, P.J., 1988. Tissue culture and plant regeneration from sunflower (Helianthus annuus) and interspecific hybrids (H. tuberosus × H. annuus). Plant Cell Tissue Organ Culture 13: 61–76.CrossrefGoogle Scholar

  • Yordanov, Y., Yordanova, E., Atanassov, A., 2002. Plant regeneration from interspecific hybrid and backcross progeny of Helianthus eggertii × Helianthus annuus. Plant Cell Tissue Organ Culture 71: 7–14.CrossrefGoogle Scholar

  • Zhang, Z.F., Finer, J.J., 2015. Sunflower (Helianthus annuus L.) organogenesis from primary leaves of young seedlings preconditioned by cytokinin. Plant Cell Tissue Organ Culture 123: 645–655.CrossrefGoogle Scholar

About the article

Received: 2017-03-23

Accepted: 2017-05-15

Published Online: 2017-06-02

Published in Print: 2017-06-27

This research was funded by a grant from a consortium of sunflower seed companies through the National Sunflower Association, Mandan, ND, USA. Mention of trade names or commercial products in this report is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer.

Citation Information: Helia, Volume 40, Issue 66, Pages 1–19, ISSN (Online) 2197-0483, ISSN (Print) 1018-1806, DOI: https://doi.org/10.1515/helia-2017-0006.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in