Jump to ContentJump to Main Navigation
Show Summary Details
More options …


International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year

IMPACT FACTOR 2016: 1.868
5-year IMPACT FACTOR: 1.875

CiteScore 2016: 1.83

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954

See all formats and pricing
More options …
Volume 54, Issue 4


Effects of Element Size and Orientation in the Production of High Strength Resin Impregnated Wood Based Materials

H. Yano / K. Mori / P.J. Collins / Y. Yazaki
Published Online: 2005-06-01 | DOI: https://doi.org/10.1515/HF.2000.073


The effects of low molecular weight phenolic resin impregnation and high pressure hot pressing (150°C, 30–100 MPa) on the physical and mechanical properties of wood were first investigated by using sawn wood prepared from a block of Japanese birch (Betula meximowicziana). Subsequently, the effects of element size and orientation were examined by using sliced veneers, particles and powder prepared from the remaining portion of the block. Due to the combination of resin impregnation and hot pressing under high pressure, the specific bending strength at 20°C and 65% RH of sawn wood increased 50% accompanied by enormous decreases in moisture content, and bending strength reached around 400 MPa. The mechanical properties of veneer laminated product did not differ significantly from those of sawn wood product. Among isotropic products, the highest bending strength at 20°C and 65% RH of plywood, particleboard and powderboard was 242 MPa, 166 MPa and 175 MPa, respectively. The difference of bending strength between plywood and other isotropic products could be explained by the difference in element orientation, cross lamination and random distribution. Furthermore, the results for the particleboard and powderboard showed that when the resin impregnated elements were hot pressed under high pressure, a decrease in element size did not result in a decrease in bending strength.

About the article

Published Online: 2005-06-01

Published in Print: 2000-07-04

Citation Information: Holzforschung, Volume 54, Issue 4, Pages 443–447, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/HF.2000.073.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Chris P. Gabrielli and Frederick A. Kamke
Wood Science and Technology, 2010, Volume 44, Number 1, Page 95
Daniel Mourant, Dian-Qing Yang, Bernard Riedl, and Christian Roy
Holz als Roh- und Werkstoff, 2008, Volume 66, Number 3, Page 163

Comments (0)

Please log in or register to comment.
Log in