Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Holzforschung

International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2016: 1.868
5-year IMPACT FACTOR: 1.875

CiteScore 2016: 1.83

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 61, Issue 2 (Mar 2007)

Issues

Development of an accelerated soil-contact decay test

Gan Li / Darrel D. Nicholas / Tor P. Schultz

Abstract

An accelerated method to evaluate wood preservatives for soil contact was explored using thin (4 mm) pine sticks in small decay cups containing non-sterile soil and wood compost-amended soil. The extent of wood decay was measured by monitoring changes in the bending elasticity (MOE) of the test samples, which was found to be a sensitive measure of the decay extent for both chromated copper arsenate (CCA)- and copper naphthenate (CuNap)-treated wood, and untreated wood. The decay rate was rapid, with significant decay detected in untreated wood after only 2 months of exposure. Decay in both treated and untreated wood samples was observed sooner when the soil was amended with wood compost. The compost-amended soil also gave significantly higher copper depletion for CCA- but not CuNap-treated wood. Although the results from this test should not be extrapolated to predict field test performance, it does appear to be applicable for rapid comparison of the performance of new and established preservative systems.

Keywords: accelerated decay test; biocide depletion; chromated copper arsenate (CCA); copper naphthenate (CuNap); decay fungi; modulus of elasticity (MOE); wood preservation

About the article

Corresponding author. Forest Products Department/FWRC, Box 9820, Mississippi State University, Mississippi State, MS 39762-9820, USA


Received: August 9, 2006

Accepted: January 11, 2007

Published in Print: 2007-03-01


Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/HF.2007.037.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S.F. Curling, N. Laflin, G.M. Davies, G.A. Ormondroyd, and R.M. Elias
Industrial Crops and Products, 2017, Volume 97, Page 395
[2]
Youngmin Kang, Lynn Prewitt, Susan Diehl, and Darrel Nicholas
International Biodeterioration & Biodegradation, 2010, Volume 64, Number 7, Page 545
[3]
C. Brischke, C. R. Welzbacher, and T. Huckfeldt
Holz als Roh- und Werkstoff, 2008, Volume 66, Number 6, Page 433

Comments (0)

Please log in or register to comment.
Log in