Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 67, Issue 5

Issues

Optimization of sulfuric acid-assisted glycerol pretreatment of sugarcane bagasse

Carlos Martín
  • Corresponding author
  • vTI-Institute for Wood Technology and Wood Biology, Hamburg, Germany
  • Department of Chemistry and Chemical Engineering, University of Matanzas, 44740 Matanzas, Cuba
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Puls / Andreas Schreiber / Bodo Saake
Published Online: 2013-02-16 | DOI: https://doi.org/10.1515/hf-2012-0179

Abstract

A combined pretreatment of sugarcane bagasse with glycerol and sulfuric acid was investigated based on a central composite rotatable experimental design. The following factors were varied: temperature (150–199°C), time (0.69–2.3 h), H2SO4 concentration (0.0–1.1%), and glycerol concentration (55.4–79.6%). Xylans and lignin were considerably solubilized during pretreatment. Xylan solubilization, ranging between 6% and 94%, increased significantly with the increase of temperature, time, and H2SO4 concentration and dropped with the increase of glycerol amount. Glycerol restricted the solubilization and full hydrolysis of xylans and the degradation of xylose. Lignin solubilization (20.6–49.4%) increased with the increase of all the experimental factors. Cellulose recovery, which was generally high, increased with the increasing of glycerol concentration and declined at high levels of the other factors. Recoveries above 97% were achieved at low H2SO4 concentration and high glycerol load, whereas the lowest value (83.4%) was achieved in the longest-lasting experiment. The models based on the experimental results predicted the maximal lignin solubilization at 187.7°C, 2.3 h, 79.6% glycerol, and 0.64% H2SO4, whereas the highest yield of enzymatic hydrolysis can be expected at 194.1°C, 1.67 h, 79.6% glycerol, and 1.1% H2SO4. The optimal conditions were confirmed in control experiments. The synergistic effect of sulfuric acid and glycerol on the enzymatic hydrolysis of cellulose was demonstrated.

Keywords: cellulose hydrolysis; ethanol; glycerol; pretreatment; sugarcane bagasse

References

  • Agarwal, A.K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progr. Energy Comb. Sc. 33:233–271.Google Scholar

  • Aziz, S., Goyal, G.C. (1993) Kinetics of delignification from mechanistic and process control point of view in solvent pulping processes. 1993 Pulping Conference Proc., Atlanta, GA, 3:917–920.Google Scholar

  • Bajpai, D., Tyagi, V.K. (2006) Biodiesel: source, production, composition, properties and its benefits. J. Oleo Sci. 55: 487–502.Google Scholar

  • Behr, A., Eilting, J., Irawadi, K., Leschinski, J., Lindner, F. (2008) New chemical products on the basis of glycerol. Chem. Today 26:32–36.Google Scholar

  • Cardona, C.A., Quintero, J.A., Paz, I.C. (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101:4754–4766.PubMedGoogle Scholar

  • Dautzenberg, G., Gerhardt, M., Kamm, B. (2011) Bio based fuels and fuel additives from lignocellulose feedstock via the production of levulinic acid and furfural. Holzforschung 65:439–451.Web of ScienceGoogle Scholar

  • Demirbas, A. (1998) Aqueous glycerol delignification of wood chips and ground wood. Biores. Technol. 63:179–185.Google Scholar

  • Díaz, M.J., Huijgen, W.J.J., van der Laan, R.R., Reith, J.H., Cara, C., Castro, E. (2011) Organosolv pretreatment of olive tree biomass for fermentable sugars. Holzforschung 65:167–173.Web of ScienceGoogle Scholar

  • Fengel, D., Wegener, G. Wood – Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin, 1989.Google Scholar

  • Gütsch, J.S., Sixta, H. (2011) Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal). Holzforschung 65:511–518.Google Scholar

  • Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G. (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24:549–556.Google Scholar

  • Hoogendoorn, A., Adriaans, T., van Kasteren, J.M.N., Jayaraj, K.M. (2007) Glycerine purification via bio-catalysis and column adsorption for high-quality applications. Report No. 0656632-R06. Ingenia Consultants & Engineers, Eindhoven, The Netherlands.Google Scholar

  • Hörhammer, H., Walton, S., van Heiningen, A. (2011) A larch based biorefinery: pre-extraction and extract fermentation to lactic acid. Holzforschung 65:491–496.Web of ScienceGoogle Scholar

  • Ismail, T.N.M.T., Hassan, H.A., Hirose, S., Taguchi, Y., Hatakeyama, T., Hatakeyama, H. (2010) Synthesis and thermal properties of ester-type crosslinked epoxy resins derived from lignosulfonate and glycerol. Polym. Int. 59:181–186.Google Scholar

  • Kirsch, C., Zetzl, C., Smirnova, I. (2011) Development of an integrated thermal and enzymatic hydrolysis for lignocellulosic biomass in fixed-bed reactors. Holzforschung 65:483–489.Web of ScienceGoogle Scholar

  • López, Y., Gullón, B., Puls, J., Parajó, J.C., Martín, C. (2011) Dilute acid pretreatment of starch-containing rice hulls for ethanol production. Holzforschung 65:467–473.Web of ScienceGoogle Scholar

  • Martín, C., Puls, J., Saake, B., Schreiber, A. (2011) Effect of glycerol pretreatment on component recovery and enzymatic hydrolysis of sugarcane bagasse. Cell. Chem. Technol. 45:487–494.Google Scholar

  • Puls, J. (1987) Organosolv treatment of wood and annual plants. Application of final products. In: Degradation of Lignocellulosics in Ruminants and in Industrial Processes. Eds. van der Meer, J.M., Rijkens, B.A., Ferranti, M.P. Elsevier Applied Science Publishers Ltd., London. pp. 75–83.Google Scholar

  • Puls, J. (1993) Substrate analysis of forest and agricultural wastes. In: Bioconversion of Forest and Agricultural Residues. Ed. Saddler, J.N. CAB International, Wallingford. pp. 13–32.Google Scholar

  • Schütt, F., Puls, J., Saake, B. (2011) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung 65:453–459.Web of ScienceGoogle Scholar

  • Sun, F., Chen, H. (2007) Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J. Chem. Technol. Biotechnol. 82:1039–1044.Web of ScienceGoogle Scholar

  • Sun, F., Chen, H. (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour. Technol. 99:5474–5479.Web of SciencePubMedGoogle Scholar

  • Taherzadeh, M.J., Karimi, K. (2007) Enzyme-based hydrolysis processes for ethanol from lignocelulosic materials: a review. BioResources 2:707–738.Google Scholar

  • Testova, L., Chong, S.-L., Tenkanen, M., Sixta, H. (2011) Autohydrolysis of birch wood. Holzforschung 65:535–542.Web of ScienceGoogle Scholar

  • Ungurean, M., Fitigau, F., Paul, C., Ursoiu, A., Peter, F. (2011) Ionic liquid pretreatment and enzymatic hydrolysis of wood biomass. World Acad. Sci. Eng. Technol. 76:387–391.Google Scholar

  • Zhao, X., Cheng, K., Liu, D. (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 85:815–827.Web of SciencePubMedGoogle Scholar

About the article

Corresponding author: Carlos Martín, Department of Chemistry and Chemical Engineering, University of Matanzas, 44740 Matanzas, Cuba, Phone: +53-45-256880, Fax: +53-45-253101


Received: 2012-10-30

Accepted: 2013-01-15

Published Online: 2013-02-16

Published in Print: 2013-07-01


Citation Information: Holzforschung, Volume 67, Issue 5, Pages 523–530, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0179.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chayanon Chotirotsukon, Marisa Raita, Verawat Champreda, and Navadol Laosiripojana
Industrial Crops and Products, 2019, Volume 141, Page 111753
[2]
Song Tang, Qian Dong, Zhen Fang, Wen-jie Cong, and Zheng-diao Miao
Bioresource Technology, 2019, Page 122164
[4]
Anjali Singhal, Madan Kumar, Mallika Bhattacharya, Neeta Kumari, Pawan Kumar Jha, Devendra Kumar Chauhan, and Indu Shekhar Thakur
Bioresource Technology, 2018
[5]
André Rodrigues Gurgel da Silva, Massimiliano Errico, and Ben-Guang Rong
Biomass Conversion and Biorefinery, 2017
[6]
Widya Fatriasari, Sita Heris Anita, and Lucky Risanto
Waste and Biomass Valorization, 2017, Volume 8, Number 2, Page 379
[7]
Aloia Romaní, Héctor A. Ruiz, José A. Teixeira, and Lucília Domingues
Renewable Energy, 2016, Volume 95, Page 1
[8]
Zhanying Zhang, Mark D. Harrison, Darryn W. Rackemann, William O. S. Doherty, and Ian M. O'Hara
Green Chem., 2016, Volume 18, Number 2, Page 360
[10]
Carlos Martin, Pavel V. Volkov, Aleksandra M. Rozhkova, Jürgen Puls, and Arkady P. Sinitsyn
Industrial Crops and Products, 2015, Volume 77, Page 382
[11]
Zhanying Zhang, Heng H. Wong, Peter L. Albertson, Mark D. Harrison, William O.S. Doherty, and Ian M. O’Hara
Bioresource Technology, 2015, Volume 192, Page 367
[12]
Edem Cudjoe Bensah, Francis Kemausuor, Kodwo Miezah, Zsófia Kádár, and Moses Mensah
Renewable and Sustainable Energy Reviews, 2015, Volume 49, Page 1

Comments (0)

Please log in or register to comment.
Log in