Abaqus 6.9 Online Documentation (2009) Dassault System.Google Scholar

Conrad, M., Smith, G., Fernlund, G. (2003) Fracture of discontinuous wood-adhesive bonds. Int. J. Adhes. Adhes. 23:39–47.CrossrefGoogle Scholar

Coureau, J., Morel, S., Gustafsson, P., Lespine, C. (2006) Influence of the fracture softening behavior of wood on load-COD curve and R-curve. Mater. Struct. 40:97–106.Google Scholar

ASTM (2007) D5528-01. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. American Society for Testing Material.Google Scholar

DIN (1977) 52-183. Prüfung von Holz – Bestimmung des Feuchtigkeitsgehaltes.Google Scholar

DIN-EN (2003) 205. Adhesives – wood adhesives for non-structural applications. Determination of the tensile-shear strength of lap joints.Google Scholar

Dinwoodie, J. (1989) Wood, Nature’s Cellular, Polymeric Fibre-Composite. The Institute of Metals, London.Google Scholar

Duchanois, G. (1984) Mesure de la ténacité et étude du comportement mécanique des joints bois-colle. Ph.D. thesis, Institut National Polytechnique de Lorraine.Google Scholar

Dunky, M., Niemz, P. Holzwerkstoffe und Leime – Technologie und Einflussfaktoren. Springer-Verlag, Berlin, 2002.Google Scholar

Frühmann, K., Burgert, I., Stanzl-Tschegg, S.E., Tschegg, E.K. (2003) Mode I fracture behaviour on the growth ring scale and cellular level of spruce (*Picea abies* [L.] Karst.) and beech (*Fagus sylvatica* L.) loaded in the TR crack propagation system. Holzforschung 57:653–660.Google Scholar

Gagliano, J.M., Frazier, C.E. (2001) Improvement in the fracture cleavage testing of adhesively-bonded wood. Wood Fiber Sci. 33:377–385.Google Scholar

Ganne-Chédeville, C. (2008) Soudage linéaire du bois: étude et compréhension des modifications physico-chimiques et développement d’une technologie d’assemblage innovante. Ph.D. thesis, Université Henri Poincaré.Google Scholar

Ganne-Chédeville, C., Pizzi, A., Thomas, A., Leban, J., Bocquet, J., Despres, A., Mansouri, H. (2005) Parameter interaction in two-block welding and the wood nail concept in wood dowel welding. J. Adhes. Sci. Technol. 19:1157–1174.CrossrefGoogle Scholar

Ganne-Chédeville, C., Duchanois, G., Pizzi, A., Pichelin, F., Properzi, M., Leban, J. (2008) Wood welded connection: energy release rate measurement. J. Adhes. Sci. Technol. 22:169–179.CrossrefGoogle Scholar

Gfeller, B., Zanetti, M., Properzi, M., Pizzi, A., Pichelin, F., Lehmann, M., Delmotte, L. (2003) Wood bonding by vibrational welding. J. Adhes. Sci. Technol. 17:1573–1589.CrossrefGoogle Scholar

Gfeller, B., Pizzi, A., Zanetti, M., Properzi, M., Pichelin, F., Lehmann, M., Delmotte, L. (2004) Solid wood joints by in situ welding of structural wood constituents. Holzforschung 58:45–52.Google Scholar

Hering, S., Keunecke, D., Niemz, P. (2012) Moisture-dependent orthotropic elasticity of beech wood. Wood Sci. Technol. 46:927–936.CrossrefWeb of ScienceGoogle Scholar

Kollmann, F. Technologie des Holzes und der Holzwerkstoffe. Springer-Verlag, Berlin, 1982.Google Scholar

Kretschmann, D.E., Green, D.W. (1996) Modeling moisture content-mechanical properties relationship for clear southern pine. Wood Fiber Sci. 28:320–337.Google Scholar

Landis, E.N., Navi, P. (2009) Modeling crack propagation in wood and wood composites. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture. Holzforschung 63:150–156.Web of ScienceGoogle Scholar

Liyu, W., Zhenyou, L., Guangjie, Z. (2003) Wood fracture pattern during the water adsorption process. Holzforschung 57: 639–643.Google Scholar

Majano-Majano, A., Hughes, M., Fernandez-Cabo, J.L. (2012) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci. Technol. 46:5–21.CrossrefWeb of ScienceGoogle Scholar

Mansouri, H., Omrani, P., Pizzi, A. (2009) Improving the water resistance of linear vibration-welded wood joints. J. Adhes. Sci. Technol. 23:63–70.Web of ScienceCrossrefGoogle Scholar

Morel, S., Lespine, C., Coureau, J.-L., Planas, J., Dourado, N. (2010) Bilinear softening parameters and equivalent LEFM R-curve in quasibrittle failure. Int. J. Solids Struct. 47:837–850.Web of ScienceCrossrefGoogle Scholar

Navi, P., Stanzl-Tschegg, S.E. (2009) Micromechanics of creep and relaxation of wood. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture. Holzforschung 63:186–195.Web of ScienceGoogle Scholar

Niemz, P. Physik des Holzes und der Holzwerkstoff. DRW-Verlag, 1993.Google Scholar

Omrani, P., Mansouri, H., Duchanois, G., Pizzi, A. (2009) Fracture mechanics of linearly welded wood joints: effect of wood species and grain orientation. J. Adhes. Sci. Technol. 23:2057–2072.Web of ScienceCrossrefGoogle Scholar

Pluvinage, G. La Rupture du Bois et de ses Composites. Cépaduès-Editions, Toulouse, 1992.Google Scholar

Prokopski, G. (1996) Influence of moisture content on fracture toughness of wood. Int. J. Fracture 79:R73–R77.Google Scholar

Smith, I., Snow, M., Asiz, A., Vasic, S. (2007) Failure mechanisms in wood-based materials: A review of discrete, continuum, and hybrid finite-element representations. Holzforschung 61:352–359.Web of ScienceGoogle Scholar

Qiao, P., Wang, J., Davalos, J. (2003) Tapered beam on elastic foundation model for compliance rate change of TDCB specimen. Eng. Fract. Mech. 70:339–353.CrossrefGoogle Scholar

Rhême, M., Botsis, J., Cugnoni, J., Navi, P. (2013) Influence of the moisture content on the fracture characteristics of welded wood joint. Part 2: mode II fracture. Holzforschung 67:755–761.Google Scholar

Scott, C., River, B., Koutsky, J. (1992) Fracture testing wood adhesive with composite cantilever beam. J. Test. Eval. 21:259–264.Google Scholar

Simon, F. (2001) Endommagement et rupture des joints collés solicitée en traction ou cisaillement. Application au collage du bois. Ph.D. thesis, Université Bordeaux I.Google Scholar

Stamm, B. (2005) Development of friction welding of wood – physical, mechanical and chemical studies. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne.Google Scholar

Stanzl-Tschegg, S.E., Navi, P. (2009) Fracture behavior of wood and its composites. A review. Holzforschung 63:139–149.Google Scholar

Vasic, S., Stanzl-Tschegg, S. (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61:367–374.Web of ScienceGoogle Scholar

Vaziri, M., Lindgrend, O., Pizzi, P., Mansouri, H. (2010) Moisture sensitivity of Scots pine joints produced by linear frictional welding. J. Adhes. Sci. Technol. 24:1515–1527.CrossrefWeb of ScienceGoogle Scholar

Wernersson, H. (1991) Fracture characterization of wood adhesive bonds. Paper presented at the 1991 International Timber Engineering Conference, Report TVSM, London.Google Scholar

Yoshihara, H. (2010) Examination of the mode I critical stress intensity factor of wood obtained by single-edge-notched bending test. Holzforschung 64:501–509.Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.