Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 67, Issue 7


Condensed conifer tannins as antifungal agents in liquid culture

Anna-Kaisa Anttila / Anna Maria Pirttilä / Hely Häggman / Anni Harju / Martti Venäläinen / Antti Haapala / Bjarne Holmbom / Riitta Julkunen-Tiitto
Published Online: 2013-02-27 | DOI: https://doi.org/10.1515/hf-2012-0154


In the last decades, many wood preservatives have been prohibited for their ecotoxicity. The present article is focusing on the conifer-derived condensed tannins as environment-friendly options for the substitution of artificial wood preservatives. Eight different tannin fractions were extracted from spruce cones, spruce barks, and pine cones. The parameters of tannin extraction, such as the methods of purification and concentration of active components in the extracts, have been investigated. The cone and bark extracts were tested for the growth inhibition of eight brown-rot fungi, three white-rot fungi, and four soft-rot fungi in liquid cultures. The cone tannins provided a more efficient fungal growth inhibition than bark tannins. Purification increased the antifungal properties of the extracts. The growth of brown-rot fungi was inhibited by the tannins already at low concentrations. However, the extracts were not effective against the white-rot or soft-rot fungi. More investigation is needed concerning the tannin source and the purification procedure of the extracts before tannins can be considered as an ecologically benign wood preservative.

Keywords: brown-, white- and soft-rot; condensed tannins; conifers; fungal growth inhibition; wood preservation


  • Binbuga, N., Chambers, K., Henry, W.P., Schultz, T.P. (2005) Metal chelation studies relevant to wood preservation. 1. Complexation of propyl gallate with Fe2+. Holzforschung 59:205–209.Google Scholar

  • Binbuga, N., Ruhs, C., Hasty, J.K., Henry, W.P., Schultz, T.P. (2008) Developing environmentally benign and effective organic wood preservatives by understanding the biocidal and non-biocidal properties of extractives in naturally durable heartwood. Holzforschung 62:264–269.Web of ScienceGoogle Scholar

  • Celimene, C.C., Micales, J.A., Ferge, L., Young, R.A. (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53:491–497.Web of ScienceGoogle Scholar

  • Cowan, M. (1999) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:564–582.PubMedGoogle Scholar

  • Cruz-Hernandez, M., Contreras-Esquivel, J., Faustino, L., Rodriguez, R., Aguila, C. (2005) Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert. Z. Naturforsch. C. 60:844–848.Google Scholar

  • Dai, J., Mumper, R.J. (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352.PubMedWeb of ScienceGoogle Scholar

  • Deacon, J. Fungal Biology. Wiley-Blackwell Publishing Ltd., Oxford, UK, 2006.Google Scholar

  • Donoso-Fierro, C., Becerra, J., Bustos-Concha, E., Silva, M. (2009) Chelating and antioxidant activity of lignans from Chilean woods (Cupressaceae). Holzforschung 63:559–563.Web of ScienceGoogle Scholar

  • Eberhardt, T.L., Young, R.A. (1994) Conifer seed cone proanthocyanidin polymers: characterization by 13C NMR spectroscopy and determination of antifungal activities. J. Agric. Food Chem. 42:1704–1708.CrossrefGoogle Scholar

  • Gaffney, S.H., Martin, R., Lilley, T.H., Haslam, E., Magnolato, D. (1986) The association of polyphenols with caffeine and alpha- and beta-cyclodextrin in aqueous media. J. Chem. Soc. Comm. 2:107–109.CrossrefGoogle Scholar

  • Gao, H., Shupe, T.F., Hse, C.Y., Eberhardt, T.L. (2006) Antioxidant activity of extracts from the bark of Chamaecyparis lawsoniana (A. Murray) Parl. Holzforschung 60:459–462.Google Scholar

  • Hagerman, A.E. The Tannin Handbook. Miami University, Oxford, OH, 2011. Available at: http://chemistry.muohio.edu/hagerman.

  • Harborne, J.B. Phytochemical methods: a guide to modern techniques of plant analysis. Chapman & Hall, New York, 1984.Google Scholar

  • Haslam, E. Practical polyphenols, from structure to molecular recognition and physiological action. Cambridge University Press, Cambridge, UK, 1998.Google Scholar

  • Hernes, P.J., Hedges, J.I. (2004) Tannin signatures of barks, needles, leaves, cones, and wood at the molecular level. Geochim. Cosmochim. Acta 68:1293–1307.Google Scholar

  • Julkunen-Tiitto, R., Häggman, H. Tannins and tannin agents. (Eds.) Bechtold, T., Mussak, R. In: Handbook of Natural Colorants. John Wiley & Sons Ltd., Chichester, UK, 2009. pp. 201–219.Google Scholar

  • Laks, P.E., McKaig, P.A., Hemingway, R.W. (1988) Flavonoid biocides: wood preservatives based on condensed tannins. Holzforschung 42:299–306.Google Scholar

  • Liers, C., Ullrich, R., Steffen, K.T., Hatakka, A., Hofrichter, M. (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl. Microbiol. Biotechnol. 69:573–579.CrossrefGoogle Scholar

  • Liimatainen, J., Karonen, M., Sinkkonen, J., Helander, M., Salminen, J.-P. (2011) Characterization of phenolic compounds from inner bark of Betula pendula. Holzforschung 66: 171–181.Web of ScienceGoogle Scholar

  • Makino, R., Ohara, S., Hashida, K. (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65:651–657.Web of ScienceGoogle Scholar

  • Mendiola, J.A., Herrero, M., Cifuentes, A., Ibanez, E. (2007) Use of compressed fluids for sample preparation: food applications. J. Chromatogr. A 1152:234–246.Web of ScienceGoogle Scholar

  • Niemenmaa, O. Monitoring on fungal growth and degradation of wood. doctoral dissertation. University of Helsinki University Press, Finland, 2008.Google Scholar

  • Pizzi, A., Beacker, A. (1996) A new boron fixation mechanism for environment friendly wood preservatives. Holzforschung 50:507–510.Google Scholar

  • Porter, L.J. Structure and chemical properties of the condensed tannins. (Eds.) Hemingway, R.W., Laks, P.E. In: Plant Polyphenols. Plenum Press, New York, 1992. pp. 245–258.Google Scholar

  • Porter, L.J, Hrstich, L.N., Chan, B.G. (1986) The conversion of proanthocyanidins and prodelphinidins to cyanidins and delphinidins. Phytochemistry 25:223–230.Google Scholar

  • Richter, B.E., Jones, B.A., Ezzell, J.L., Porter, N.L., Avdalovic, N., Pohl, C. (1996) Accelerated solvent extraction: a technique for sample preparation. Anal. Chem. 68:1033–1039.Google Scholar

  • Santana, C.M., Ferrera, Z.S., Padrón, M.E.T., Rodríguez, J.J.S. (2009) Methodologies for the extraction of phenolic compounds from environmental samples: new approaches. Molecules 14:298–320.Web of ScienceGoogle Scholar

  • Savory, J.G. (1954) Damage to wood caused by micro-organisms. J. Appl. Microbiol. 17:213–218.Google Scholar

  • Scalbert, A. (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883.Google Scholar

  • Scalbert, A., Cahill, D., Dirol, D., Navarrete, M.-A., de Troya, M.-T., Van Leemput, M. (1998) A tannin/copper preservation treatment for wood. Holzforschung 52:133–138.Google Scholar

  • Schmidt, O. (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol. Prog. 6:261–279.Web of ScienceGoogle Scholar

  • Seigler, D.S. Plant Secondary Metabolism. Boston, Kluwer Academic Publishers, 1998.Google Scholar

  • Smeds, A.I., Eklund, P.C., Monogioudi, E., Willför, S.M. (2011) Chemical characterization of polymerized products formed in the reactions of matairesinol and pinoresinol with the stable radical 2,2-diphenyl-1-picrylhydrazyl. Holzforschung 66:283–294.Web of ScienceGoogle Scholar

  • Telysheva, G., Dizhbite, T., Bikovens, O., Ponomarenko, J., Janceva, S., Krasilnikova, J. (2011) Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 65:623–629.Web of ScienceGoogle Scholar

  • Tondi, G., Wieland, S., Lemenager, N., Petutschnigg, A., Pizzi, A., Thevenon, M.-F. (2012) Efficacy of tannin in fixing boron in wood: fungal and termite resistance. BioResources 7:1238–1252.Google Scholar

  • Willför, S., Nisula, L., Hemming, J., Reunanen, M., Holmbom, B. (2004) Bioactive phenolic substances in industrially important tree species. Part 2: knots and stemwood of fir species. Holzforschung 58:650–659.Google Scholar

  • Yamaguchi, H., Okuda, K. (1998) Chemically modified tannin and tannin-copper complexes as wood preservatives. Holzforschung 52:596–602.Google Scholar

  • Yao, L.-N. Su, Y.-F., Yin, Z.-Y., Qin, N., Li, T.-X., Si, C.-L., Liu, E.-W., Gao, X.-M. (2010) A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64:571–575.Google Scholar

  • Zulaica-Villagomez, H., Peterson, D.M., Herrin, L., Young, R.A. (2005) Antioxidant activity of different components of pine species. Holzforschung 59:156–162.Google Scholar

About the article

Corresponding author: Anna-Kaisa Anttila, Biology Department, University of Oulu, Oulu, Finland, e-mail:

Received: 2012-09-21

Accepted: 2013-01-29

Published Online: 2013-02-27

Published in Print: 2013-10-01

Citation Information: Holzforschung, Volume 67, Issue 7, Pages 825–832, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0154.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Aitor Barbero-López, Soumaya Chibily, Laura Tomppo, Ayobami Salami, Francisco Javier Ancin-Murguzur, Martti Venäläinen, Reijo Lappalainen, and Antti Haapala
Industrial Crops and Products, 2019, Volume 129, Page 604
Nevena Šuškalo, Dino Hasanagić, Ljiljana Topalić-Trivunović, Zoran Kukrić, Ivan Samelak, Aleksandar Savić, and Biljana Kukavica
Ecotoxicology, 2018
Chuan-Ling Si, Guo-Jing Yu, Zhen-Guo Du, Xiao-Feng Huang, Su Fan, Hai-Shun Du, and Wei-Cheng Hu
Holzforschung, 2015, Volume 0, Number 0
Alma Fernanda Sanchez Maldonado, Andreas Schieber, and Michael G. Gänzle
Trends in Food Science & Technology, 2015, Volume 46, Number 1, Page 49

Comments (0)

Please log in or register to comment.
Log in