Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 67, Issue 7

Issues

Fire resistance of wood treated with various ionic liquids (ILs)

Hisashi Miyafuji
  • Corresponding author
  • Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yoshiyuki Fujiwara
  • Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-21 | DOI: https://doi.org/10.1515/hf-2012-0166

Abstract

Ionic liquids (ILs) have been investigated for their potential as reagents for enhancing the fire resistance of wood. The following ILs were in focus: 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium tetrafluoroborate, and 1-ethyl-3-methylimidazolium hexafluorophosphate ([C2mim][PF6]). Supposedly, these ILs do not dissolve or degrade wood components to a large extent. No morphologic changes were observed in any IL-treated wood samples, but they showed an enhanced fire resistance compared with that of untreated wood. Scanning electron microscopy and energy-dispersive X-ray analysis demonstrated that the ILs are penetrated into the cell walls. The wood treated with [C2mim][PF6] exhibited the highest fire resistance based on thermogravimetric and differential thermal analyzer studies: it was more resistant against flaming at approximately 350°C and the subsequent glowing at higher temperatures. This enhanced fire resistance was interpreted by dehydration in the presence of the ILs under observation. In general, ILs are promising reagents for improving the thermal properties of wood.

Keywords: [C2mim][BF4]; [C2mim][Br]; 1-ethyl-3-methylimidazolium hexafluorophosphate ([C2mim][PF6]); fire resistance; fire retardance; ionic liquid (IL); SEM-EDXA; TG-DTA; wood

References

  • Barthel, S., Heinze, T. (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 8:301–307.CrossrefGoogle Scholar

  • Baysal, E., Yalinkilic, M.K. (2005) A comparative study on stability and decay resistance of some environmental friendly fire-retardant boron compounds. Wood Sci. Technol. 39: 169–186.CrossrefGoogle Scholar

  • Baysal, E., Altinok, M., Colak, M., Ozaki, S.K., Toker, H. (2007) Fire resistance of Douglas fir (Pseudotsuga menzieesi) treated with borates and natural extractives. Bioresource Technol. 98:1101–1105.CrossrefWeb of ScienceGoogle Scholar

  • Blasi, C.D., Branca, C., Galgano, A. (2008) Thermal and catalytic decomposition of wood impregnated with sulfur- and phosphorus-containing ammonium salts. Polym. Degrad. Stabil. 93:335–346.Web of ScienceCrossrefGoogle Scholar

  • Browne, F.L. (1958) Theories of the combustion of wood and its control. In: U.S. Forest Service No. 2136, Forest Product Lab., Madison, WI, pp. 20–33.Google Scholar

  • Chen, G.C. (2008) Synthesis and evaluation of phosphortriamidates in wood for thermal and fungal decay protection. Holzforschung 62:318–321.Web of ScienceGoogle Scholar

  • DeGroot, W.F., Shafizadeh, F. (1984) The influence of exchangeable cations on the carbonization of biomass. J. Anal. Appl. Pyrol. 6:217–232.CrossrefGoogle Scholar

  • Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, P., Rogers, R.D. (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 9:63–69.Web of ScienceCrossrefGoogle Scholar

  • Furuno, T., Uehara, T., Jodai, S. (1993) Combinations of wood and silicate, 3: some properties of wood-mineral composites using the water glass-boron compound system. Mokuzai Gakkaishi 39:561–570.Google Scholar

  • Garba, B. (1999) Effect of zinc borate as flame retardant formulation on some tropical wood. Polym. Degrad. Stabil. 64: 517–522.CrossrefGoogle Scholar

  • Heinze, T., Schwikal, K., Barthel, S. (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol. Biosci. 5:520–525.CrossrefPubMedGoogle Scholar

  • Honglu, X., Tiejun, S. (2006) Wood liquefaction by ionic liquids. Holzforschung 60:509–512.Google Scholar

  • Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S. (2007) Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55:9142–9148.CrossrefWeb of ScienceGoogle Scholar

  • Liebner, F., Patel, I., Ebner, G., Becker, E., Horix, M., Potthast, A., Rosenau, T. (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166.Web of ScienceGoogle Scholar

  • Miyafuji, H., Saka, S. (1996) Wood-inorganic composites prepared by the sol-gel process V: fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites. Mokuzai Gakkaishi 42:74–80.Google Scholar

  • Miyafuji, H., Saka, S. (1997) Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Sci. Technol. 31:449–455.Google Scholar

  • Miyafuji, H., Saka, S. (1998) SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforschung 52:410–416.CrossrefGoogle Scholar

  • Miyafuji, H., Saka, S. (2001) Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties. J. Wood Sci. 47:483–489.CrossrefGoogle Scholar

  • Miyafuji, H., Suzuki, N. (2011) Observation by light microscope of sugi (Cryptomeria japonica) treated with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J. Wood Sci. 57: 459–461.Web of ScienceCrossrefGoogle Scholar

  • Miyafuji, H., Suzuki, N. (2012) Morphological changes in sugi (Cryptomeria japonica) wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J. Wood Sci. 58:222–230.Web of ScienceCrossrefGoogle Scholar

  • Miyafuji, H., Miyata, K., Saka, S., Ueda, F., Mori, M. (2009) Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J. Wood Sci. 55:215–219.Web of ScienceCrossrefGoogle Scholar

  • Nakamura, A., Miyafuji, H., Saka, S. (2010a) Liquefaction behaviour of western red cedar and Japanese beech in the ionic liquid 1-ethyl-3-methylimidazolium chloride. Holzforschung 64:289–294.Web of ScienceGoogle Scholar

  • Nakamura, A., Miyafuji, H., Saka, S. (2010b) Influence of reaction atmosphere on the liquefaction and depolymerisation of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J. Wood Sci. 56:256–261.Web of ScienceCrossrefGoogle Scholar

  • Nakamura, A., Miyafuji, H., Saka, S., Mori, M., Takahashi, H. (2010c) Recovery of cellulose and xylan liquefied in ionic liquids by precipitation in anti-solvents. Holzforschung 64:77–79.Web of ScienceGoogle Scholar

  • Nishimoto, K., Tsunoda, K., Imamura, Y. (1988) New complex material, wood ceramic – their properties. In: Proceedings of S5. 03-04 Session IUFRO D5, Forest Prod. Conf., Sao Paulo, Brazil, pp. 55–63.Google Scholar

  • Ogiso, K., Saka, S. (1993) Wood-inorganic composites prepared by sol-gel process II: effects of ultrasonic treatments on preparation of wood-inorganic composites. Mokuzai Gakkaishi 39:301–307.Google Scholar

  • Ogiso, K., Saka, S. (1994) Wood-inorganic composites prepared by sol-gel process IV: effects of chemical bonds between wood and inorganic substances on property enhancement. Mokuzai Gakkaishi 40:1100–1106.Google Scholar

  • Pedieu, R., Koubaa, A., Riedl, B., Wang, X.M., Deng, J. (2012) Fire-retardant properties of wood particleboards treated with boric acid. Eur. J. Wood Prod. 70:191–197.CrossrefWeb of ScienceGoogle Scholar

  • Saka, S., Tanno, F. (1996) Wood-inorganic composites prepared by the sol-gel process VI: effects of a property-enhancer on fire-resistance in SiO2-P2O5 and SiO2-B2O3 wood-inorganic composites. Mokuzai Gakkaishi 42:81–86.Google Scholar

  • Saka, S., Ueno, T. (1997) Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci. Technol. 31:457–466.Google Scholar

  • Saka, S., Yakake, Y. (1993) Wood-inorganic composites prepared by sol-gel process III: chemically-modified wood-inorganic composites. Mokuzai Gakkaishi 39:308–314.Google Scholar

  • Saka, S., Sasaki, M., Tanahashi, M. (1992) Wood-inorganic composites prepared by sol-gel processing I: wood-inorganic composites with porous structure. Mokuzai Gakkaishi 38:1043–1049.Google Scholar

  • Seddon, K.R. (1997) Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68:351–356.CrossrefGoogle Scholar

  • Shafizadeh, F., Bradbury, A.G.W., DeGroot W.F., Aanerud, T.W. (1982) Role of inorganic additives in the smolding combustion of cellulose. Ind. Eng. Chem. Prod. Res. Dev. 21:97–101.CrossrefGoogle Scholar

  • Shimada, K., Uehara, T., Jodai, S. (1992) Combination of wood and silicate, 2: wood-mineral composites using water glass and reactants of barium chloride, boric acid, and borax, and their properties. Mokuzai Gakkaishi 38:448–457.Google Scholar

  • Stasiewicz, M., Fojutowski, A., Kropacz, A., Pernak, J. (2008) 1-Alkoxymethyl-X-dimethylaminopyridinium-base ionic liquids in wood preservation. Holzforschung 62:309–317.Web of ScienceGoogle Scholar

  • Stevens, R., Es, D.S. van, Bezemer, R., Kranenbarg, A. (2006) The structure-activity relationship of fire retardant phosphorus compounds in wood. Polym. Degrad. Stabil. 91:832–841.CrossrefGoogle Scholar

  • Swatloski, R.P., Spear, S.K., Hobrey, J.D., Rogers, R.D. (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124:4947–4975.Google Scholar

  • Terzi, E., Kartal, S.N., White, R.H., Shinoda, K., Imamura, Y. (2011) Fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants. Eur. J. Wood. Prod. 69:41–51.Web of ScienceCrossrefGoogle Scholar

  • Viell, J., Marquardt, W. (2011) Disintegration and dissolution kinetics of wood chips in ionic liquids. Holzforschung 65:519–525.Web of ScienceGoogle Scholar

  • Wang, Q., Li, J., Winandy, J.E. (2004) Chemical mechanism of fire retardance of boric acid on wood. Wood Sci. Technol. 38: 375–389.Google Scholar

  • Wu, J., Zhang, J., Zhang, H., He, J., Ren, Q., Guo, M. (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268.CrossrefGoogle Scholar

  • Xie, H., Shi, T. (2006) Wood liquefaction by ionic liquids. Holzforschung 60:509–512.Google Scholar

About the article

Corresponding author: Hisashi Miyafuji, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan, e-mail:


Received: 2012-10-11

Accepted: 2013-02-25

Published Online: 2013-03-21

Published in Print: 2013-10-01


Citation Information: Holzforschung, Volume 67, Issue 7, Pages 787–793, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0166.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yiheng Huang, Wang Wang, and Jinzhen Cao
Holzforschung, 2018, Volume 72, Number 8, Page 711
[2]
Xiaoshuai Han, Qinqin Zhang, Yihui Yin, and Junwen Pu
Holzforschung, 2018, Volume 72, Number 5, Page 375
[4]
Ryunosuke Nishita, Kosuke Kuroda, Shiori Suzuki, Kazuaki Ninomiya, and Kenji Takahashi
Polymer Journal, 2019, Volume 51, Number 8, Page 781
[5]
Ryunosuke Nishita, Kosuke Kuroda, Shohei Ota, Takatsugu Endo, Shiori Suzuki, Kazuaki Ninomiya, and Kenji Takahashi
New Journal of Chemistry, 2019, Volume 43, Number 5, Page 2057
[6]
Toru KANBAYASHI
MOKUZAI HOZON (Wood Protection), 2017, Volume 43, Number 6, Page 308
[7]
[8]
Hisashi Miyafuji
Journal of Wood Science, 2015, Volume 61, Number 4, Page 343

Comments (0)

Please log in or register to comment.
Log in