Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 67, Issue 7

Issues

Evaluation of cell wall reinforcement in feather keratin-treated waterlogged wood as imaged by synchrotron X-ray microtomography (μXRT) and TEM

Rie Endo
  • Corresponding author
  • Toyo Feather Industry Co., Ltd., 2-26-5, Fuchinobe, Chuo Ward, Sagamihara, 252-0206 Kanagawa, Japan
  • Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, 611-0011 Kyoto, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Junji Sugiyama
  • Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, 611-0011 Kyoto, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-23 | DOI: https://doi.org/10.1515/hf-2012-0181

Abstract

Archaeological waterlogged woods (WLW) become considerably fragile over time because of chemical hydrolysis and the deterioration by microorganisms in the wet buried environment. The methods are sought for the dimensional stabilization of such woods. In the present article, the conservation of archaeological WLW of Chamaecyparis pisifera (Sieb. et Zucc.) Endl. by means of a commercially available feather keratin was in focus. The impregnation of an ancient wood from the 9th century A.D. was examined by the noninvasive synchrotron X-ray microtomography, which is well suited for imaging fragile samples. The thickness of the cell walls of keratin-treated wood was preserved and was comparable with that of recent wood. Notably, the middle lamella (ML) of keratin-treated wood appeared to be electron dense as indicated by transmission electron microscopy. Thus, it can be concluded that feather keratin is predominantly adsorbed on the ML and it prevents wood cell walls from collapsing and provides reinforcement.

Keywords: archaeological waterlogged wood; conservation; feather keratin; middle lamella; synchrotron X-ray microtomography (μXRT); transmission electron microscopy (TEM)

References

  • Almkvist, G., Persson, I. (2008a) Degradation of polyethylene glycol and hemicellulose in the Vasa. Holzforschung 62:64–70.Web of ScienceGoogle Scholar

  • Almkvist, G., Persson, I. (2008b) Analysis of acids and degradation products related to iron and sulfur in the Swedish warship Vasa. Holzforschung 62:694–703.Web of ScienceGoogle Scholar

  • Almkvist, G., Persson, I. (2008c) Fenton-induced degradation of polyethylene glycol and oak holocellulose. A model experiment in comparison to changes observed in conserved waterlogged wood. Holzforschung 62:704–708.Web of ScienceGoogle Scholar

  • Bardet, M., Foray, M.F., Trân, Q. (2002) High-resolution solid-state CPMAS NMR study of archaeological woods. Anal. Chem. 74:4386–4390.CrossrefPubMedGoogle Scholar

  • Baxter, N.J., Lilley, T.H., Haslam, E., Williamson, M.P. (1997) Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–5577.PubMedCrossrefGoogle Scholar

  • Bjurhager, I., Ljungdahl, J., Wallstrom, L., Gamstedt, E.K., Berglund, L.A. (2010) Towards improved understanding of PEG-impregnated waterlogged archaeological wood: a model study on recent oak. Holzforschung 64:243–250.Web of ScienceGoogle Scholar

  • Blanchette, R.A. (2000) A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 46:189–204.CrossrefGoogle Scholar

  • Blanchette, R.A., Iiyama, K., Abad, A.R., Cease, K.R. (1991) Ultrastructure of ancient buried wood from Japan. Holzforschung 45:161–168.Google Scholar

  • Braovac, S., Kutzke, H. (2012) The presence of sulfuric acid in alum-conserved wood – origin and consequences. J. Cult. Heritage 13:S203–S208.Web of ScienceCrossrefGoogle Scholar

  • Bugani, S., Modugno, F., Łucejko, J., Giachi, G., Cagno, S., Cloetens, P., Janssens, K., Morselli, L. (2009) Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography. Anal. Bioanal. Chem. 395:1977–1985.Web of ScienceGoogle Scholar

  • Christensen, B.B. (1970) The conservation of waterlogged wood in the National Museum of Denmark. National Museum of Denmark, Copenhagen.Google Scholar

  • Endo, R., Kamei, K., Iida, I., Kawahara, Y. (2008) Dimensional stability of waterlogged wood treated with hydrolyzed feather keratin. J. Archaeol. Sci. 35:1240–1246.CrossrefWeb of ScienceGoogle Scholar

  • Endo, R., Kamei, K., Iida, I., Yokoyama, M., Kawahara, Y. (2010) Physical and mechanical properties of waterlogged wood treated with hydrolyzed feather keratin. J. Archaeol. Sci. 37:1311–1316.CrossrefWeb of ScienceGoogle Scholar

  • Fraser, R.D.B., MacRae, T.P. Conformation in fibrous proteins and related synthetic polypeptides. Academic Press, New York. 1973.Google Scholar

  • Glastrup, J., Shashoua, Y., Egsgaard, H., Martin, N.M. (2006) Formic and acetic acids in archaeological wood. A comparison between the Vasa Warship, the Bremen Cog, the Oberländer Boat and the Danish Viking Ships. Holzforschung 60:259–264.Google Scholar

  • Grattan, D.W. (1987) Waterlogged wood. In: Conservation of Marine Archaeological Objects. Ed. Pearson, C. Butterworths, London. pp. 55–67.Google Scholar

  • Grattan, D.W., Clarke, R.W. (1987) Conservation of waterlogged wood. In: Conservation of Marine Archaeological Objects. Ed. Pearson, C. Butterworths, London, UK. pp. 164–206.Google Scholar

  • Håfors, B. (1989) The role of the Wasa in the development of the polyethylene glycol preservation method. In: Archaeological Wood Properties, Chemistry, and Preservation. Eds. Rowell, R.M., Barbour, J. American Chemical Society, LA, USA. pp. 195–216.Google Scholar

  • Hedges, J.I. (1989) The chemistry of archaeological wood. In: Archaeological Wood Properties, Chemistry, and Preservation. Eds. Rowell, R.M., Barbour, J. American Chemical Society, LA, USA. pp. 111–140.Google Scholar

  • Hoffmann, P. (1986) On the stabilization of waterlogged oakwood with PEG. II. Designing a two-step treatment for multi-quality timbers. Stud. Conserv. 31:103–113.Google Scholar

  • Hoffmann, P. (1988) On the stabilization of waterlogged oakwood with polyethylene glycol (PEG) III. Testing the oligomers. Holzforschung 42:289–294.Google Scholar

  • Hoffmann, P. (1990) On the stabilization of waterlogged softwoods with polyethylene glycol (PEG). Four species from China and Korea. Holzforschung 44:87–93.CrossrefGoogle Scholar

  • Hoffmann, P. (2010) On the long-term visco-elastic behaviour of polyethylene glycol (PEG) impregnated archaeological oak wood. Holzforschung 64:725–728.Web of ScienceGoogle Scholar

  • Hoffmann, P., Singh, A.P., Kim, Y.S., Wi, S.G., Kim, I., Schmitt, U. (2004) The Bremen Cog of 1380 – an electron microscopic study of its degraded wood before and after stabilization with PEG. Holzforschung 58:211–218.Google Scholar

  • Iiyama, K., Kasuya, N., Tuyet, L.T.B., Nakano, J., Sakaguchi, H. (1988) Chemical characterization of ancient buried wood. Holzforschung 42:5–10.CrossrefGoogle Scholar

  • Imazu, S., Morgos, A. (1996) Conservation of waterlogged wood using sugar alcohol and comparison of the effectiveness of the lactitol, sucrose and PEG#4000 treatments. In: Proceedings of the 6th ICOM Group on Wet Organic Archaeological Materials Conference. pp. 235–256.Google Scholar

  • Kim, Y.S., Singh, A.P. (1999) Micromorphological characteristics of compression wood degradation in waterlogged archaeological pine wood. Holzforschung 53:381–385.Google Scholar

  • Kim, Y.S., Singh, A.P. (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J. 21:135–155.CrossrefGoogle Scholar

  • Ljungdahl, J., Berglund, L.A. (2007) Transverse mechanical behaviour and moisture absorption of waterlogged archaeological wood from the Vasa ship. Holzforschung 61:279–284.Web of ScienceGoogle Scholar

  • Łucejko, J.J., Modugno, F., Ribechini, E., del Río, J.C. (2009) Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques. Anal. Chim. Acta 654:26–34.Web of ScienceGoogle Scholar

  • Mizuno, S., Torizu, R., Sugiyama, J. (2010) Wood identification of a wooden mask using synchrotron X-ray microtomography. J. Archaeol. Sci. 37:2842–2845.CrossrefWeb of ScienceGoogle Scholar

  • Parrent, J.M. (1985) The conservation of waterlogged wood using sucrose. Stud. Conserv. 30:63–72.Google Scholar

  • Powell, K.L., Pedley, S., Daniel, G., Corfield, M. (2001) Ultrastructural observations of microbial succession and decay of wood buried at a Bronze Age archaeological site. Int. Biodeterior. Biodegrad. 47:165–173.CrossrefGoogle Scholar

  • Reynolds, E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208–212.CrossrefGoogle Scholar

  • Scholz, G., Zauer, M., Van den Bulcke, J., Van Loo, D., Pfriem, A., Van Acker, J., Militz, H. (2010) Investigation on wax-impregnated wood. Part 2: study of void spaces filled with air by He pycnometry, Hg intrusion porosimetry, and 3D X-ray imaging. Holzforschung 64:587–593.Web of ScienceGoogle Scholar

  • Siebert, K.J., Troukhanova, N.V., Lynn, P.Y. (1996) Nature of polyphenol-protein interactions. J. Agric. Food Chem. 44:80–85.CrossrefGoogle Scholar

  • Svedström, K., Bjurhager, I., Kallonen, A., Peura, M., Serimaa, R. (2012) Structure of oak wood from the Swedish warship Vasa revealed by X-ray scattering and microtomography. Holzforschung 66:355–363.Web of ScienceGoogle Scholar

  • Taylor, A., Plank, B., Standfest, G., Petutschnigg, A. (2013) Beech wood shrinkage observed at the micro-scale by a time series of X-ray computed tomographs (μXCT). Holzforschung 67:201–205.Web of ScienceGoogle Scholar

  • Walther, T., Thoemen, H. (2009) Synchrotron X-ray microtomography and 3D image analysis of medium density fiberboard (MDF). Holzforschung 63:581–587.Web of ScienceGoogle Scholar

  • Zauner, M., Keunecke, D., Mokso, R., Stampanoni, M., Niemz, P. (2012) Synchrotron-based tomographic microscopy (SbTM) of wood: development of a testing device and observation of plastic deformation of uniaxially compressed Norway spruce samples. Holzforschung 66:973–979.Web of ScienceGoogle Scholar

About the article

Corresponding author: Rie Endo, Toyo Feather Industry Co., Ltd., 2-26-5, Fuchinobe, Chuo Ward, Sagamihara, 252-0206 Kanagawa, Japan, e-mail: ; and Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, 611-0011 Kyoto, Japan


Received: 2012-10-31

Accepted: 2013-02-25

Published Online: 2013-03-23

Published in Print: 2013-10-01


Citation Information: Holzforschung, Volume 67, Issue 7, Pages 795–803, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0181.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nguyen Duc Thanh, Soichiro Wakiya, Kazutaka Matsuda, Bui Duy Ngoc, Junji Sugiyama, and Yohsei Kohdzuma
Journal of Wood Science, 2018
[3]
Thanh Duc Nguyen, Keita Sakakibara, Tomoya Imai, Yoshinobu Tsujii, Yohsei Kohdzuma, and Junji Sugiyama
Journal of Wood Science, 2018
[4]
Vladimirs Biziks, Jan Van den Bulcke, Juris Grinins, Holger Militz, Bruno Andersons, Ingeborga Andersone, Jelle Dhaene, and Joris Van Acker
Holzforschung, 2016, Volume 70, Number 2
[5]
Rie Endo, Tsutomu Hattori, Makoto Tomii, and Junji Sugiyama
Journal of Cultural Heritage, 2015, Volume 16, Number 6, Page 869

Comments (0)

Please log in or register to comment.
Log in