Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 68, Issue 1

Issues

Influence of wood durability on the suppressive effect of increased temperature on wood decay by the brown-rot fungus Postia placenta

Ari M. Hietala / Emil Stefańczyk / Nina Elisabeth Nagy / Carl Gunnar Fossdal / Gry Alfredsen
Published Online: 2013-10-26 | DOI: https://doi.org/10.1515/hf-2012-0157

Abstract

Local climate conditions have a major influence on the biological decomposition of wood. To examine the influence of different temperature regimes on wood decay caused by the brown rot fungus Postia placenta in wood with differing natural durability, sapwood (sW) and heartwood (hW) of Scots pine, inoculated mini-blocks were incubated for up to 10 weeks at temperatures conducive or above optimal to wood decay. We profiled mass loss (ML) and wood composition, and accompanying changes in wood colonization and transcript level regulation of fungal candidate genes. The suppressive effect of suboptimal temperature on wood decay caused by P. placenta appeared more pronounced in Scots pine hW with increased durability than in sW with low decay resistance. The differences between sW and hW were particularly pronounced for cultures incubated at 30°C: unlike sW, hW showed no ML, poor substrate colonization and marker gene transcript level profiles indicating a starvation situation. As brown rot fungi show considerable species-specific variation in temperature optima and ability to mineralize components that contribute to wood durability, interactions between these factors will continue to shape the fungal communities associated to wood in service.

Keywords: climate change; fungal wood degradation; mass loss (ML); microscopy; real-time PCR; thermogravimetric analysis

References

  • Alfredsen, G., Bader, T.K., Dibdiakova, J., Filbakk, T., Bollmus, S., Hofstetter, K. (2011) Thermogravimetric analysis for wood decay characterization. Eur. J. Wood Prod. 70:527–530.Google Scholar

  • American Society for Testing and Materials (ASTM) (1994). Standard test method for wood preservatives by laboratory soil-block cultures. D1413-76 (reapproved 1986). Annual Book of ASTM Standards, 1994. V4.10, ASTM, Philadelphia, pp. 218–224.Google Scholar

  • Arantes, V., Jellison, J., Goodell, B. (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biotechnol. 94:323–338.Web of SciencePubMedGoogle Scholar

  • Bagley, S.T., Richter, D.L. (2002). Biodegradation by brown rot fungi. In: The Mycota X: Industrial applications. Eds. Osiewacz, H.D. Springer-Verlag, Berlin, Heidelberg. pp. 327–341.Google Scholar

  • Carneiro, J.S., Emmert, L., Sternadt, G.H., Mendes, J.C., Almeida, G.F. (2009) Decay susceptibility of Amazon wood species from Brazil against white rot and brown rot decay fungi. Holzforschung 63:767–772.Web of ScienceGoogle Scholar

  • Coyne, K.J., Handy, S.M., Demir, E., Whereat, E.B., Hutchins, D.A., Portune, K.J., Doblin, M.A., Cary, S.C. (2005) Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnol. Oceanogr. Methods 3:381–391.Google Scholar

  • Curling, S.F., Clausen, C.A., Winandy, J.E. (2002) Relationships between mechanical properties, weight loss and chemical composition of wood during incipient brown-rot decay. Forest Prod. J. 52:34–39.Google Scholar

  • Daniel, G., Volc, J., Filonova, L., Plíhal, O., Kubátová, H.P. (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl. Environ. Microbiol. 73:6241–6253.PubMedGoogle Scholar

  • Davies, M., Schroeder, H.A., Maciel, G.E. (1994) Solid state 13C nuclear magnetic resonance studies of wood decay. III. Decay of Colorado blue spruce and paper birch by Postia placenta. Holzforschung 48:301–307.Google Scholar

  • del Cerro, M., Cogen, J., del Cerro, C. (1980) Stevenel’s blue, an excellent stain for optical microscopical study of plastic embedded tissues. Microsc. Acta 83:117–121.Google Scholar

  • Eaton, R.A., Hale, M.D.C. (1993) Wood: Decay, Pests, and Protection. Chapman & Hall, London.Google Scholar

  • Eikenes, M., Hietala, A.M, Alfredsen, G., Fossdal, C.G., Solheim, H. (2005) Comparison of quantitative real-time PCR, chitin and ergosterol assays for monitoring colonization of Trametes versicolor in birch wood. Holzforschung 59:568–573.Google Scholar

  • Ekeberg, D., Flæte, P.-O., Eikenes, M., Fongen, M., Naess-Andresen, C.F. (2006) Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chrom. A 1109:267–272.Google Scholar

  • EN113 (1996) Wood preservatives. Test method for determining the protective effectiveness against wood destroying basidiomycetes. Determination of toxic values. Brussels, Belgium, European Committee for Standardization (CEN), 31.Google Scholar

  • ENV 807 (2001). Wood preservatives. determination of the toxic effectiveness against soft rotting micro-fungi and other soil inhabiting micro-organisms. Brussels, Belgium, European Committee for Standardization (CEN).Google Scholar

  • Eriksson, K.E.L., Blanchette, R.A., Ander, P. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, 1990.Google Scholar

  • Gonzalez, J.M., Morrell, J.J. (2012) Effects of environmental factors on decay rates of selected white- and brown-rot fungi. Wood Fiber Sci. 44:343–356.Google Scholar

  • Goodell, B., Jellison, J., Liu, J., Daniel, G., Paszczynski, A., Fekete, F., Krishnamurthy, S., Jun, L., Xu, G. (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53:133–162.Google Scholar

  • Grønli, M.G., Várhegyi, G., Di Blasi, C. (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41:4201–4208.Google Scholar

  • Hammel, K.E., Kapich, A.N., Jensen, K.A. Jr, Ryan, Z.C. (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30:445–453.Google Scholar

  • Intergovernmental Panel on Climate Change (IPCC) (2007) IPCC fourth assessment report in summary for policymakers. IPCC, Geneva.http://www.ipcc.ch/.

  • Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C.P., Ferreira, P., Ruiz-Duenas, F.J., Martinez, A.T., Kersten, P., Hammel, K.E., van den Wymelenberg, A., Gaskell, J., Lindquist, E., Sabat, G., Splinter BonDurant, S., Larrondo, L.F., Canessa, P., Vicuna, R., Yadav, J., Doddapaneni, H., Subramanian, V., Pisabarro, A.G., Lavín, J.L., Oguiza, J.A., Master, E., Henrissat, B., Coutinho, P.M., Harris, P., Magnuson, J.K., Baker, S.E., Bruno, K., Kenealy, W., Hoegger, P.J., Kües, U., Ramaiya, P., Lucas, S., Salamov, A., Shapiro, H., Tu, H., Chee, C.L., Misra, M., Xie, G., Teter, S., Yaver, D., James, T., Mokrejs, M., Pospisek, M., Grigoriev, I.V., Brettin, T., Rokhsar, D., Berka, R., Cullen, E. (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. 106:1954–1959.Google Scholar

  • Nagy, N.E., Franceschi, V.R., Solheim, H., Krekling, T., Christiansen, E. (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. Am. J. Bot. 87:302–313.PubMedGoogle Scholar

  • Nagy, N.E., Balance, S., Kvaalen, H., Fossdal, C.G., Solheim H., Hietala, A.M. (2012) Xylem defense wood of Norway spruce compromised by the pathogenic white-rot-fungus Heterobasidion parviporum shows a prolonged period of selective decay. Planta 236:1125–1133.Web of ScienceGoogle Scholar

  • Olsson, T., Megnis, M., Varna, J., Lindberg, H. (2001) Study of the transverse liquid flow paths in pine and spruce using scanning electron microscopy. J. Wood Sci. 47:282–288.Google Scholar

  • Paszczynski, A., Crawford, R., Funk, D., Goodell, B. (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl. Environ. Microbiol. 65:674–679.Google Scholar

  • Rayner, A.D.M., Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology. John Wiley & Sons, New York, 1988.Google Scholar

  • Ritschkoff, A.-C. (1996) Decay mechanisms of brown-rot fungi. Technical Research Centre of Finland, Espoo, VTT Publications 268.Google Scholar

  • Rozen, S., Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. In: Methods in Molecular Biology. Eds. Krawetz, S., Misener, S. Humana Press, Totowa, NJ, USA. pp 365–386.Google Scholar

  • Schmidt, O. Wood and Tree Fungi. Springer, Berlin, 2006.PubMedGoogle Scholar

  • Schmidt, O., Moreth, U. (1996) Biological characterization of Poria indoor brown-rot fungi. Holzforschung 50:105–110.Google Scholar

  • Suzuki, M.R., Hung, C.G., Houtman, C.J., Dalebroux, Z.D., Hammel, K.E. (2006) Fungal hydroquinones contribute to brown rot of wood. Environ. Microbiol. 8:2214–2223.PubMedGoogle Scholar

  • Venäläinen, M., Harju, A.M., Saranpää, P., Kainulainen, P., Tiitta, M., Velling, P. (2004) The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood Sci. Technol. 38:109–118.Google Scholar

  • Viitanen, H. (1997) Critical time of different humidity and temperature conditions for the development of brown rot decay in pine and spruce. Holzforschung 51:99–106.Google Scholar

  • Xu, G., Goodell, B. (2001) Mechanisms of wood degradation by brownrot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J. Biotechnol. 87:43–57.Google Scholar

  • Zabel, R.A., Morrell, J.J. Wood microbiology: decay and its prevention. Academic Press Inc., New York, USA. 1992.Google Scholar

About the article

Corresponding author: Ari M. Hietala, Norwegian Forest and Landscape Institute, P.O. Box 115, NO-1431 Ås, Norway, Phone: +47 64949049, Fax: +47 64942980, e-mail:


Received: 2012-09-22

Accepted: 2013-03-01

Published Online: 2013-10-26

Published in Print: 2014-01-01


Citation Information: Holzforschung, Volume 68, Issue 1, Pages 123–131, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0157.

Export Citation

©2014 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. C. Moody, E. Dudley, J. Hiscox, L. Boddy, D. C. Eastwood, and Dan Cullen
Applied and Environmental Microbiology, 2017, Volume 84, Number 2, Page e01401-17
[2]
G.A. Ormondroyd, G. Alfredsen, R.T. Durai Prabhakaran, S.F. Curling, B.K. Stefanowski, M.J. Spear, and L.R. Gobakken
International Biodeterioration & Biodegradation, 2017, Volume 120, Page 1
[3]
G. Alfredsen, R. Ringman, A. Pilgård, and C. G. Fossdal
International Wood Products Journal, 2015, Volume 6, Number 1, Page 5

Comments (0)

Please log in or register to comment.
Log in