Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 68, Issue 3


Determination of the mechanical properties of radiata pine timber by means of longitudinal and transverse vibration methods

Francisco Arriaga / Joaquin Monton / Edgar Segues / Guillermo Íñiguez-Gonzalez
Published Online: 2013-09-04 | DOI: https://doi.org/10.1515/hf-2013-0087


Bending properties have been determined by mechanical testing [modulus of elasticity (MOE) and modulus of rupture (MOR)] and by means of longitudinal (L) and transverse (T) vibration nondestructive methods on 150 sawn timber pieces of Pinus radiata D. Don, with the dimensions of 80×120 mm cross-section and 2500 mm long, from Catalonia, Spain. The fundamental vibration frequency was measured by recording the sound produced by hitting the piece in L and T directions, and this signal was analyzed by fast Fourier transform sound analyzer. The dynamic MOE was obtained for both procedures and compared with static MOE and MOR. The notion of concentrated knot diameter ratio (CKDR) was introduced to improve the prediction of MOR. CKDR gives better results when this parameter is referred to the central portion of piece length. Both methods (L and T frequencies) have similar accuracy in prediction of mechanical properties, but the first one is simpler and has some practical advantages. The timber graded with this nondestructive method offers better results than the visual grading rules for the same output.

Keywords: longitudinal vibration; mechanical properties; nondestructive testing; sawn timber; transverse vibration


  • Arriaga, F., Íñiguez, G., Esteban, M. (2005) Assessment of strength and stiffness properties using longitudinal stress wave on structural gross cross section timber of radiata pine (Pinus radiata D. Don). Proceedings of the 14th International Symposium on Non-destructive Testing of Wood. Shaker Verlag, Germany, pp. 101–110.Google Scholar

  • Arriaga, F., Íñiguez-Gonzalez, G., Esteban, M., Divos, F. (2012) Vibration method for grading of large cross section timber of Spanish coniferous species. Holzforschung 66:381–387.Web of ScienceGoogle Scholar

  • Bodig, J., Jayne, B.A. (1993) Mechanics of wood and wood composites. Krieger Publishing Company, Malabar, FL, USA, 1993.Google Scholar

  • Brancheriau, L. (2006) Influence of cross section dimensions on Timoshenko’s shear factor. Application to wooden beams in free-free flexural vibration. Ann. For. Sci. 63:319–321.Google Scholar

  • Brancheriau, L., Bailleres, H. (2002) Natural vibration analysis of clear wooden beams: a theoretical review. Wood Sci. Technol. 36:347–365.Google Scholar

  • Brancheriau, L., Baillères, H. (2003) Use of the partial least squares method with acoustic vibration spectra as a new grading technique for structural timber. Holzforschung 57:644–652.Google Scholar

  • Brazilian standard NBR 15521. (2007) Ensaios não destrutivos. Ultra-som. Classificação mecânica de madeira serrada de dicotiledôneas. Non-destructive testing. Ultrasonic testing. Mechanical classification of dicotyledonous sawn wood. Organismo de Normalização setorial de Ensaios Não-Destrutivos. Organism for Standardization of Non-destructive Testing.Google Scholar

  • Bucur, V. Acoustic of wood. Springer-Verlag, Berlin/Heidelberg, 2006.Google Scholar

  • Chauhan, S.S., Entwistle, K.M., Walker, J.C.F. (2005) Differences in acoustic velocity by resonance and transit-time methods in an anisotropic laminated wood medium. Holzforschung 59:428–434.Google Scholar

  • Chauhan, S.S., Entwistle, K.M., Walker, J.C.F. (2007) Search for a relationship between stress wave velocity and internal stresses in eucalypts and radiata pine. Holzforschung 61:60–64.Web of ScienceGoogle Scholar

  • Divos, F. (2002) Portable Lumber Grader. 13th International Symposium on Non-destructive Testing of Wood, Berkeley, CA, USA.Google Scholar

  • Divos, F. (2005) Course in Non-destructive Testing of Wood. Unpublished material. Madrid June 13–16, 2005. ETS Ingenieros de Montes-ETS Arquitectura, UPM, Universidad Politécnica de Madrid, Spain.Google Scholar

  • Divos, F., Tanaka, T. (1997) Lumber Strength Estimation by Multiple Regression. Holzforschung 51:467–471.Google Scholar

  • Divos, F., Denes, L., Íñiguez, G. (2005) Effect of cross-sectional change on stress wave velocity determination. Holzforschung 59:230–231.Google Scholar

  • European Standard EN 13183-2. (2002) Moisture content of a piece of sawn timber. Part 2: estimation by electrical resistance method. European Committee for Standardization, Brussels, Belgium.Google Scholar

  • European Standard EN 14081-2. (2005) Timber structures. Strength graded structural timber with rectangular cross section. Part 2: machine grading. Additional requirements for initial type testing. European Committee for Standardization, Brussels, Belgium.Google Scholar

  • European Standard EN 384. (2010) Structural timber. Determination of characteristic values of mechanical properties and density. European Committee for Standardization, Brussels, Belgium.Google Scholar

  • European Standard EN 408. (2010) Timber structures. Sawn timber and glued laminated timber for structural use. Determination of some physical and mechanical properties. European Committee for Standardization, Brussels, Belgium.Google Scholar

  • Galligan, W.L., Courteau, R.W. (1965) Measurements of the elasticity of lumber with longitudinal stress waves and the piezoelectric effect of wood. Proc. 2nd Symp. on Nondestructive Testing of Wood, Washington State University, Pullman, pp. 223–244.Google Scholar

  • Görlacher, R. (1984) Ein neues Messverfahren zur Bestimmung des Elastizitätsmoduls von Holz. Holz Roh Werkst. 42:219–222.Google Scholar

  • Hanhijärvi, A., Ranta-Maunus, A., Turk, G. (2005) Potential of strength grading of timber with combined measurement techniques. Report of the Combigrade-project—phase 1. VTT Technical Research Centre of Finland. 91 pp.Google Scholar

  • Hearmon, R.F.S. (1966) Theory of the vibration testing of wood. For. Prod. J. 16:29–40.Google Scholar

  • Íñiguez, G. (2007) Clasificación mediante técnicas no destructivas y evaluación de las propiedades mecánicas de la madera aserrada de coníferas de gran escuadría para uso estructural (Grading by non destructive techniques and assessment of the mechanical properties of large cross section coniferous sawn timber for structural use). Doctoral thesis. Universidad Politécnica de Madrid, ETS de Ingenieros de Montes. 223 pp. PDF file: http://oa.upm.es/415.

  • Jayne, B. (1959) Vibration properties of wood as indices of quality. For. Prod. J. 9:413–416.Google Scholar

  • Kollman, F., Krech, H. (1960) Dynamische Messungen der elastischen Holzeingschaften und der Dämpfung. Holz Roh Werkst. 18:41–54.CrossrefGoogle Scholar

  • Montero, M.J. (2013) Clasificación de madera estructural de gran escuadría de Pinus sylvestris L. mediante métodos no destructivos. (Grading of structural large cross-section timber of Pinus sylvestris L. by nondestructive methods). Doctoral thesis. Universidad Politécnica de Madrid, ETS de Ingenieros Agrónomos. 345 pp.Google Scholar

  • Montón, J. (2012) Clasificación estructural de la madera de Pinus radiata D. Don procedente de Cataluña mediante métodos no destructivos y su aplicabilidad en la diagnosis estructural. (Structural grading of Pinus radiata D. Don timber from Catalonia using nondestructive methods and their applicability in structural diagnosis). Escola Tècnica Superior D’Arquitectura de Barcelona. 160+309 pp. http://www.tdx.cat/bitstream/handle/10803/96423/TJLM1de3.pdf?sequence=1.

  • Pellerin, R.F. (1965a) A vibrational approach to nondestructive testing of structural lumber. For. Prod. J. 15:93–101.Google Scholar

  • Pellerin, R. (1965b) The contribution of transverse vibration grading to design and evaluation of 55-foot laminated beams. Proc. 2nd Symp. on Nondestructive Testing of Wood, Washington State University, Pullman, pp. 337–348.Google Scholar

  • Pellerin, R.F., Ross, R.J., Beall, F.C., Bradshaw, B.K., Cheung, K., Wang, X. Nondestructive evaluation of wood. Forest Products Society, Madison, WI, 2002.Google Scholar

  • Sandoz, J.L. (1989) Grading of construction timber by ultrasound. Wood Sci. Technol. 23:95–108.CrossrefGoogle Scholar

  • Sobue, N. (1986) Measurement of Young’s modulus by the transient longitudinal vibration of wooden beams using a FFT spectrum analyser. Mokuzai Gakkaishi Japan 32:744–747.Google Scholar

  • Tanaka, T., Nagao, H., Nakai, T. (1991) Nondestructive evaluation of bending and tensile strength by longitudinal and transverse vibration of lumber. Proceedings of the 8th International Nondestructive Testing of Wood Symposium. Washington State University. Vancouver, Washington, USA, pp. 57–72.Google Scholar

  • UNE 56544. (2011) Clasificación visual de la madera aserrada para uso estructural. Madera de coníferas. Visual grading for structural sawn timber. Coniferous timber. Asociación Española de Normalización (AENOR), Madrid, Spain.Google Scholar

  • Weaver, W., Timoshenko, S., Young, D.H. Vibration Problems in Engineering, 5th ed. Wiley-Interscience, New York, 1990.Google Scholar

About the article

Corresponding author: Francisco Arriaga, ETS Ingenieros Montes, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain, e-mail:

Received: 2013-05-21

Accepted: 2013-08-12

Published Online: 2013-09-04

Published in Print: 2014-04-01

Citation Information: Holzforschung, Volume 68, Issue 3, Pages 299–305, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2013-0087.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alberto García-Iruela, Francisco García Fernández, Luis García Esteban, Paloma de Palacios, Cristina Simón, and Francisco Arriaga
Composites Part B: Engineering, 2016, Volume 96, Page 112

Comments (0)

Please log in or register to comment.
Log in