Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 68, Issue 3


Effect of fiber modification with 3-isopropenyl-dimethylbenzyl isocyanate (TMI) on the mechanical properties and water absorption of hemp-unsaturated polyester (UPE) composites

Wendi Liu
  • College of Material Engineering, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian Province 350002, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tingting Chen
  • College of Material Engineering, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian Province 350002, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renhui Qiu
  • Corresponding author
  • College of Material Engineering, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian Province 350002, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-18 | DOI: https://doi.org/10.1515/hf-2013-0104


Hemp fibers were modified with 3-isopropenyl-dimethylbenzyl isocyanate (TMI), in presence of dibutyltin dilaurate (DBT) as a catalyst. Then reinforced hemp-unsaturated polyester (UPE) composites were prepared with modified fibers by means of hand lay-up compression molding. The fiber treatments significantly increased the tensile strength (TS), flexural strength (FS), and water resistance of the resulting composites, while their flexural modulus (FM) was not influenced. The tensile-fractured surfaces of the composites were observed by SEM and the images revealed that fiber treatments significantly improved the interfacial adhesion between hemp fibers and UPE resins. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) analysis indicated that the treated-fibers were partly covalently bound to TMI.

Keywords: composites; hemp fibers; mechanical properties; surface modification; water absorption; 3-isopropenyl-dimethylbenzyl isocyanate (TMI)


  • Chen, T., Liu, W., Qiu, R. (2013) Mechanical properties and water absorption of hemp fibers-reinforced unsaturated polyester composites: Effect of fiber surface treatment with a heterofunctional monomer. BioResources 8:2780–2791.Google Scholar

  • Dexter, R.W., Saxon, R., Fiori, D.E. (1986). m-TMI, a novel unsaturated aliphatic isocyanate. J. Coat. Technol. 58:43–47.Google Scholar

  • Faruk, O., Bledzki, A.K., Fink, H.-P., Sain, M. (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37:1552–1596.Google Scholar

  • Gironès, J., Pimenta, M.T.B., Vilaseca, F., de Carvalho, A.J.F., Mutjé, P., Curvelo, A.A.S. (2007) Blocked isocyanates as coupling agents for cellulose-based composites. Carbohydr. Polym. 68:537–543.Google Scholar

  • Gironès, J., Pimenta, M.T.B., Vilaseca, F., Carvalho, A.J.F., Mutjé, P., Curvelo, A.A.S. (2008) Blocked diisocyanates as reactive coupling agents: application to pine fiber-polypropylene composites. Carbohydr. Polym. 74:106–113.Web of ScienceGoogle Scholar

  • Gregorova, A., Wimmer, R., Hrabalova, M., Koller, M., Ters, T., Mundigler, N. (2009) Effect of surface modification of beech wood flour on mechanical and thermal properties of poly (3-hydroxybutyrate)/wood flour composites. Holzforschung 63:565–570.Web of ScienceGoogle Scholar

  • Guo, C., Li, L., Wang, Q. (2012) Investigation on the compatibilizing effect of m-isopropenyl-α, α-dimethylbenzyl isocyanate grafted polypropylene on polypropylene and wood flour composites. Wood Sci. Technol. 46:257–270.Web of ScienceGoogle Scholar

  • Houghton, R.P., Mulvaney, A.W. (1996) Mechanism of tin (IV)-catalysed urethane formation. J. Organomet. Chem. 518:21–27.Google Scholar

  • Johansson, L.-S., Campbell, J.M. (2004) Reproducible XPS on biopolymers: cellulose studies. Surf. Interface Anal. 36: 1018–1022.Google Scholar

  • Joshi, S.V., Drzal, L., Mohanty, A., Arora, S. (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites A 35:371–376.Google Scholar

  • Kabir, M., Wang, H., Lau, K., Cardona, F., Aravinthan, T. (2012) Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Composites B 43:159–169.CrossrefGoogle Scholar

  • Karmarkar, A., Chauhan, S.S., Modak, J.M., Chanda, M. (2007) Mechanical properties of wood-fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Composites A 38:227–233.Google Scholar

  • Kuang, X., Kuang, R., Zheng, X., Wang, Z. (2010) Mechanical properties and size stability of wheat straw and recycled LDPE composites coupled by waterborne coupling agents. Carbohydr. Polym. 80:927–933.Google Scholar

  • Laine, J., Stenius, P., Carlsson, G., Ström, G. (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1:145–160.CrossrefGoogle Scholar

  • Li, Y., Wu, Q., Li, J., Liu, Y., Wang, X.-M., Liu, Z. (2012) Improvement of dimensional stability of wood via combination treatment: Swelling with maleic anhydride and grafting with glycidyl methacrylate and methyl methacrylate. Holzforschung 66:59–66.Web of ScienceGoogle Scholar

  • Marais, S., Gouanvé, F., Bonnesoeur, A., Grenet, J., Poncin-Epaillard, F., Morvan, C., Métayer, M. (2005) Unsaturated polyester composites reinforced with flax fibers: Effect of cold plasma and autoclave treatments on mechanical and permeation properties. Composites A 36:975–986.Google Scholar

  • Mehta, G., Drzal, L.T., Mohanty, A.K., Misra, M. (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J. Appl. Polym. Sci. 99:1055–1068.Google Scholar

  • Qiu, R., Ren, X., Fifield, L.S., Simmons, K.L., Li, K. (2011) Hemp-fiber-reinforced unsaturated polyester composites: optimization of processing and improvement of interfacial adhesion. J. Appl. Polym. Sci. 121:862–868.Web of ScienceGoogle Scholar

  • Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C., Zeng, H.M. (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 61:1437–1447.Google Scholar

  • Sakakibara, K. and Rosenau, T. (2012) Polythiophene-cellulose composites: Synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung 66:9–19.Web of ScienceGoogle Scholar

  • Sawpan, M.A., Pickering, K.L., Fernyhough, A. (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites A 42:1189–1196.Web of ScienceGoogle Scholar

  • Sawpan, M.A., Pickering, K.L., Fernyhough, A. (2012) Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites A 43:519–526.Google Scholar

  • Sinha, E., Panigrahi, S. (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J. Compos. Mater. 43:1791–1802.Web of ScienceGoogle Scholar

  • Wu, T.-L., Chien, Y.-C., Chen, T.-Y., Wu, J.-H. (2013) The influence of hot-press temperature and cooling rate on thermal and physicomechanical properties of bamboo particle-polylactic acid composites. Holzforschung 67:325–331.Web of ScienceGoogle Scholar

About the article

Corresponding author: Renhui Qiu, College of Material Engineering, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian Province 350002, P. R. China, Phone: +86 591 83738907, Fax: +86 591 83715175, e-mail:

Received: 2013-06-13

Accepted: 2013-08-20

Published Online: 2013-09-18

Published in Print: 2014-04-01

Citation Information: Holzforschung, Volume 68, Issue 3, Pages 265–271, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2013-0104.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Wendi Liu, Ming-en Fei, Yang Ban, Anming Jia, Renhui Qiu, and Jianhui Qiu
Composites Science and Technology, 2018
Wendi Liu, Tingting Chen, Tianshun Xie, and Renhui Qiu
Composites Part A: Applied Science and Manufacturing, 2016, Volume 82, Page 1

Comments (0)

Please log in or register to comment.
Log in