Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 68, Issue 5

Issues

Complex between lignin and a Ti-based coupling agent

Jonas S. Rasmussen / Søren Barsberg / Claus Felby
Published Online: 2013-11-30 | DOI: https://doi.org/10.1515/hf-2013-0120

Abstract

Durability, haptic, and optical appearance of wood are improved by coatings, which are nowadays prepared using environmentally compatible and less health-damaging materials. However, contemporary wood coatings have frequently a shortened service life compared to their traditional predecessors. New coating formulations would have a better performance if the adhesion to wood could be improved. In the present work, the chemical interaction between a titanium-based coupling agent, isopropyl triisostearoyl titanate (titanium agent, TA) and lignin has been studied by means of attenuated total reflectance-fourier transform infrared spectroscopy in combination with first principle predictions based on the density functional theory (DFT). In the infrared spectra, a new band at 1586 cm-1 was identified and the DFT predictions confirmed that the new band is because of the covalent bonds in the form of ether linkages between TA and lignin.

Keywords: attenuated total reflectance-Fourier transform infrared (ATR-FTIR); coating; complex formation; covalent bond; density functional theory (DFT); titanium coupling agent

References

  • Ahola, P. Chemical and Physical Changes in Paints or Painted Wood Due to Ageing. Dissertation. Technical Research Centre, Finland, 1993.Google Scholar

  • Arkles, B. (1977) Tailoring surfaces with silanes. Chemtech 7:766–778.Google Scholar

  • Ashton, H.E. (1967) Clear finishes for exterior wood. Field exposure tests. J. Paint Technol. 39:212–224.Google Scholar

  • Azuma, J.I., Tetsuo, K. (1988) Lignin-carbohydrate complexes from various sources. Methods Enzymol. 161:12–14.Google Scholar

  • Berglund, K.A., Hartel, R.W. (1986) Precipitation kinetics of the titanium isopropoxide hydrolysis reaction. Mater. Res. Soc. Symp. 73:633–640.Google Scholar

  • Berglund, K.A., Tallant, D.R., Dosch, G. (1986) Time-resolved Raman spectroscopy of titanium isopropoxide hydrolysis kinetics. In: Science of Ceramic Chemical Processing. Eds. Hench, L.L., Ulrich, D.R. Wiley, New York. pp. 94–100.Google Scholar

  • Bradley, D.C. (1989) Metal alkoxides as precursors for electronic and ceramic material. Chem. Rev. 6:1317–1322.CrossrefGoogle Scholar

  • Bradley, D.C., Mehrotra, R.C., Rothwell, I.P., Singh, A. (2001) Heterometallic alkoxides. In: Alkoxo and Aryloxo Derivatives of Metals. Academic Press, London. pp. 201–221.Google Scholar

  • Brunow, G., Lundquist, K. (2010) Functional groups and bonding patterns in lignin (including the lignin-carbonhydrate complexes). In: Lignin and Lignans: Advances in Chemistry. Eds. Heither, D., Dimmel, D.R., Schmidt, J.A. CRC Press, Boco Raton, FL. pp. 267–299.Google Scholar

  • Bulian, F., Graystone, J.A. (2009) Raw materials for wood coatings – solvents, additives and colorants. In: Wood Coatings: Theory and Practice. Elsevier, Oxford. pp. 95–137.Google Scholar

  • Chang, S.T., Hon, D.N.-S., Feist, W.C. (1982) Photodegradation and photoprotection of wood surfaces. Wood fiber 14:104–117.Google Scholar

  • Derbyshire, H., Miller, E.R. (1981) Degradation of wood surfaces by water changes in mechanical properties of thin wood strips. Holz Roh- Werkst. 39:341–350.CrossrefGoogle Scholar

  • Evans, P.D., Michell, A.J., Schmalzl, K.J. (1992) Studies of the degradation and protection of wood surfaces. Wood Sci. Technol. 26:151–163.Google Scholar

  • Evans, P.D., Thay, P.D., Schmalzl, K.J. (1996) Degradation of wood surfaces during natural weathering. Effects on lignin and cellulose and on the adhesion of acrylic latex primers. Wood Sci. Technol. 30:411–422.Google Scholar

  • Faix, O. (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27.CrossrefGoogle Scholar

  • Freeman, M.H., Shupe, T.F., Vlosky, R.P., Barnes, H.M. (2003) Past, present and future of the wood preservation industry. Forest Prod. J. 53:8–15.Google Scholar

  • Freudenberg, K. (1968) The constitution and biosynthesis of lignin. In: Constitution and Biosynthesis of Lignin. Eds. Freudenberg, K., Neish, A.C. Springer, Berlin, pp. 47–122.Google Scholar

  • Frisch, M. J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, MA., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A. (2004) Gaussian, Inc., Wallingford CT.Google Scholar

  • George, B., Suttie, E., Merlin, A., Deglise, X. (2005) Photodegradation and photostabilisation of wood – the state of the art. Polym. Degrad. Stabil. 88:268–274.CrossrefGoogle Scholar

  • Heinrich, P., Wyzgol, R., Schrader, B., Hatzilazaru, A., Lübbers, D.W. (1990) Organic compounds by IR/ATR spectroscopy with polymer-coated internal reflection elements. Appl. Spectrosc. 44:1641–1648.CrossrefGoogle Scholar

  • Hergert, H.L. (1971) Infrared spectra. In: Lignins; Occurrence, Formation, Structure and Reactions. Eds. Sarkanan, K.V., Ludwig, C.H. Wiley Interscience, New York. pp. 267–299.Google Scholar

  • Hon, D.N.-S. (1996) Functional natural polymers: a new dimensional creativity. In: Chemical Modification of Lignocellulosic Materials. Ed. Hon, D.N.-S. Marcel Dekker, New York. pp. 1–11.Google Scholar

  • Ignatyev, I.S., Montejo, M., González, J.J.L. (2009) DFT predictions of vibrational spectra of titanium tetramethoxide oligomers and the structure of titanium tetraalkoxides in liquid and solid phases. Vib. Spectrosc. 51:218–225.Web of ScienceGoogle Scholar

  • Kamat, P.V. (2012) TiO2 nanostructures: recent physical chemistry advances. J. Phys. Chem. C 116:11849–11851.Google Scholar

  • Karhunen, P., Rummako, P., Sipilä, J., Brunow, G., Kilpeläinen, I. (1995) Dibenzodioxocins: a novel type of linkage in softwood lignins. Tetrahedron Lett. 36:169–170.CrossrefGoogle Scholar

  • Karkonen, A., Koutaniemi, S. (2010) Lignin biosynthesis studies in plant tissue cultures. J. Integr. Plant Biol. 52:176–185.Web of ScienceCrossrefGoogle Scholar

  • Kendahl, K. (2002) Energy analysis of adhesion. In: Adhesion Science and Engineering I – The Mechanics of Adhesion. Eds. Dillard, D.A., Pocius, A.V. Elsevier Science, Amsterdam. pp. 77–111.Google Scholar

  • Kleinert, T.N. (1971) Organosolv pulping and recovery process. United States Patent no. 3585104.Google Scholar

  • Lambert, J.B., Shurvell, H.F., Lightner, D.A., Cooks, R.G. (1988) Group frequencies. In: Organic Structural Spectroscopy. Prentice Hall, New York. pp. 171–173.Google Scholar

  • Larsen, K.L., Barsberg, S. (2011) Environmental effects on the lignin model monomer, vanillyl alcohol, studied by Raman spectroscopy. J. Phys. Chem. B 115:11470–11480.CrossrefWeb of ScienceGoogle Scholar

  • Lundquist, K., Parkås, J. (2011) Different types of phenolic units in lignin. Bioresources 6:920–926.Google Scholar

  • Merrick, J.P., Moran, D., Radom, L. (2007) An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 111:11683–11700.CrossrefWeb of ScienceGoogle Scholar

  • Michell, A.J. (1993) FTIR spectroscopic studies of the reactions of wood and of lignin model compounds with inorganic agents. Wood Sci. Technol. 27:69–80.Google Scholar

  • Nimz, H.H. (1974) Beech lignin – proposal of a constitutional scheme. Angew. Chem. Int. Ed. 13:313–321.CrossrefGoogle Scholar

  • Öhman, M., Persson, D. (2012) ATR-FTIR Kretschmann spectroscopy for interfacial studies of a hidden aluminum surface coated with a silane film and epoxy I. Characterization by IRRAS and ATR-FTIR. Surf. Interface Anal. 44:133–143.Web of ScienceCrossrefGoogle Scholar

  • Pizzi, A. (1980) Wood waterproofing and lignin crosslinking by means of chromium trioxide/guajacyl units complexes. J. Appl. Polym. Sci. 25:2547–2553.CrossrefGoogle Scholar

  • Pizzi, A. (1994) Brief nonmathematical review of adhesion theories as applied to wood. In: Advanced Wood Adhesives Technology. Marcel Dekker, New York, pp. 2–18.Google Scholar

  • Preston, A.F. (2000) Wood preservation: trends of today that will influence the industry tomorrow. Forest Prod. J. 50:12–19.Google Scholar

  • Ralph, J., Lundquist, K., Brumow, K., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralp, S.A., Christensen, J.H., Boerjan, W. (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3:29–60.CrossrefGoogle Scholar

  • Sarkanen, K.V. and Ludwig, C.H. (Eds) (1971) Lignins – Occurence, Formation, Structure and Reactions. Wiley Interscience, New York, pp. 916.Google Scholar

  • Schmalzl, K.J., Forsyth, C.M., Evans, P.D. (2003) Evidence for the formation of chromium (III) diphenoquinone complexes during oxidation of guaiacol and 2,6-dimethoxyphenol with chromic acid. Polym. Degrad. Stabil. 82:399–407.CrossrefGoogle Scholar

  • Schultz, T.P., Nicholas, D.D., Preston, A.F. (2007) A brief review of the past, present and future of wood preservation. Pest Manag. Sci. 63:784–788.CrossrefWeb of SciencePubMedGoogle Scholar

  • Soloviev, A., Jensen, H., Søgaard, E.G., Kanaev, A.V. (2003) Aggregation kinetics of sol-gel process based on titanium tetraisopropoxide. J. Mater. Sci. 38:3315–3318.CrossrefGoogle Scholar

  • Underhaug, A., Lund, T.J., Kleive, K. (1983) Wood protection – the interaction between substrate and product and the influence on durability. J. Oil Colour Chem. Assoc. 11:345–350.Google Scholar

  • Williams, R.S., Feist, W.C. (1985) Wood modified by inorganic salts: mechanism and properties. I. weathering rate, water repellency, and dimensional stability of wood modified with chromium (III) nitrate versus chromic acid. Wood Fiber Sci. 17:184–198.Google Scholar

About the article

Corresponding author: Jonas S. Rasmussen, Faculty of Science, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark, e-mail:


Received: 2013-07-04

Accepted: 2013-11-06

Published Online: 2013-11-30

Published in Print: 2014-07-01


Citation Information: Holzforschung, Volume 68, Issue 5, Pages 541–548, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2013-0120.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in