Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Holzforschung

International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2016: 1.868
5-year IMPACT FACTOR: 1.875

CiteScore 2016: 1.83

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 69, Issue 3

Issues

Damage evolution in wood – pattern recognition based on acoustic emission (AE) frequency spectra

Franziska Baensch / Markus G.R. Sause
  • University of Augsburg – Institute for Physics, Experimental Physics II, D-86135 Augsburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas J. Brunner
  • Swiss Federal Laboratories for Materials Science and Technology – Laboratory for Mechanical Systems Engineering, CH-8600 Dübendorf, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Niemz
Published Online: 2015-01-20 | DOI: https://doi.org/10.1515/hf-2014-0072

Abstract

Tensile tests on miniature spruce specimens have been performed by means of acoustic emission (AE) analysis. Stress was applied perpendicular (radial direction) and parallel to the grain. Nine features were selected from the AE frequency spectra. The signals were classified by means of an unsupervised pattern recognition approach, and natural classes of AE signals were identified based on the selected features. The algorithm calculates the numerically best partition based on subset combinations of the features provided for the analysis and leads to the most significant partition including the respective feature combination and the most probable number of clusters. For both specimen types investigated, the pattern recognition technique indicates two AE signal clusters. Cluster A comprises AE signals with a relatively high share of low-frequency components, and the opposite is true for cluster B. It is hypothesized that the signature of rapid and slow crack growths might be the origin for this cluster formation.

Keywords: acoustic emission; crack growth; damage evolution; frequency spectrum; microscopic damage mechanisms; Spruce; unsupervised pattern recognition

References

  • Aicher, S., Höfflin, L., Dill-Langer, G. (2001) Damage evolution and acoustic emission of wood at tension perpendicular to fiber. Holz Roh Werkst. 59:104–116.CrossrefGoogle Scholar

  • Ando, K., Ohta, M., Sato, K., Okano, T. (1992a) Mechanical Behavior of Materials – VI. Fracture Mechanism and Acoustic Emission Characteristics of Wood. Pergamon Press Ltd., Oxford, 1992. pp. d129–d134.Google Scholar

  • Ando, K., Sato, K., Fushitani, M. (1992b) Fracture-toughness and acoustic-emission characteristics of wood. 2. Effects of grain angle. Mokuzai Gakkaishi 38:342–349.Google Scholar

  • Ansell, M.P. (1982) Acoustic emission from softwoods in tension. Wood Sci. Technol. 16:35–57.CrossrefGoogle Scholar

  • Ashby, M.F., Easterling, K.E., Harrysson, R., Maiti, S.K. (1985) The fracture and toughness of woods. Proc. R. Soc. Lond. A 261–280.Google Scholar

  • Bucur V. (2006). 4.3 System measurment. In: Acoustics of Wood. Eds. T.E. Timell and R. Wimmer. Springer, Berlin. pp. 71–81.Google Scholar

  • Bucur, V., Böhnke, I. (1994) Factors affecting ultrasonic measurements in solid wood. Ultrasonics 32:385–390.CrossrefGoogle Scholar

  • Calinski, R., Harabasz, J. (1974) A dendrite method for cluster analysis. Commun. Stat. 3:1–27.Google Scholar

  • Cunderlik, I., Molinski, W., Raczkowski, J. (1996) The monitoring of drying cracks in the tension and opposite wood by acoustic emission and scanning electron microscopy methods. Holzforschung 50:258–262.CrossrefGoogle Scholar

  • Davies, D.L., Bouldin, D.W. (1979) A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1:224–227.PubMedCrossrefGoogle Scholar

  • Debaise, G.R., Porter, A.W., Pentoney, R.E. (1966) Morphology and mechanics of wood fracture. Mater. Res. Standard. 6:493–499.Google Scholar

  • Fratzl, P., Burgert, I., Gupta, H.S. (2004) On the role of interface polymers for the mechanics of natural polymeric composites. Phys. Chem. Chem. Phys. 6:5575–5579.CrossrefGoogle Scholar

  • Frühmann, K., Burgert, I., Stanzl-Tschegg, S. (2003) Detection of fracture path under tensile loads through in situ tests in an ESEM chamber. Holzforschung 57:326–332.Google Scholar

  • Günter, S., Bunke, H. (2003) Validation indices for graph clustering. Pattern Recognit. Lett. 24:1107–1113.Google Scholar

  • Hofstetter, K., Hellmich, Ch., Eberhardsteiner, J., Mang, H.A. (2008) Mechanics of advanced materials and structures. Mech. Adv. Mater. Struct. 15:474–484.CrossrefGoogle Scholar

  • Jakiela, S., Bratasz, L., Kozlowski, R. (2008) Acoustic emission for tracing fracture intensity in lime wood due to climatic variations. Wood Sci. Technol. 42:269–279.CrossrefGoogle Scholar

  • Kim, K.B., Kang, H.Y., Yoon, D.J., Choi M.Y. (2005) Pattern classification of acoustic emission signals during wood drying by principal component analysis and artificial neural network. Key Eng. Mater. 297–300:1962–1967.Google Scholar

  • Kurz, H., Köppel, S., Linzer, L., Schechinger, B., Grosse, C. (2008) In: Acoustic Emission Testing in Engineering – Basics and Applications. Eds. Grosse, C., Ohtsu, M. Springer Publ., Heidelberg, pp. 101–147.Google Scholar

  • Lanvermann, C., Evans, R., Schmitt, U., Hering, S., Niemz, P. (2013) Distribution of structure and lignin within growth rings of Norway spruce. Wood Sci. Technol. 47:627–641.CrossrefGoogle Scholar

  • Lee, S.-H., Quarles, S.L., Schniewind, A.P. (1996) Wood fracture, acoustic emission, and drying process. Part 2. Acoustic emission pattern recognition analysis. Wood Sci. Technol. 30:283–292.Google Scholar

  • Müller U, Gindl, W., Teischinger, A. (2003) Effects of cell wall anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. IAWA J. 24:117–128.CrossrefGoogle Scholar

  • Ogino, S., Kaino, K., Suzuki, M. (1986) Prediction of lumber checking during drying by means of acoustic emission technique. J. Accoust. Emission 5:61–65.Google Scholar

  • Pardee, W.J., Graham, L.J. (1978) Frequency analysis of two types of simulated acoustic emissions. J. Acoust. Soc. Am. 63:793–799.CrossrefGoogle Scholar

  • Reiterer, A., Stanzl-Tschegg, S.E., Tschegg, E.K. (2000) Mode I fracture and acoustic emission of softwood and hardwood. Wood Sci. Technol. 34:417–430.CrossrefGoogle Scholar

  • Romhány, G., Karger-Kocsis, J., Czigany, T. (2003) Tensile fracture and failure behavior of technical flax fibers. J. Appl. Polym. Sci. 90:3638–3645.CrossrefGoogle Scholar

  • Rosner, S. (2012) Waveform features of acoustic emission provide information about reversible and irreversible processes during spruce sapwood drying. BioResources 7:1253–1263.Google Scholar

  • Rousseeuw, P.J. (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20:53–65.CrossrefGoogle Scholar

  • Saavedra Flores, E.I., Friswell, M.I. (2013) Ultrastructural mechanisms of deformation and failure in wood under tension. Int. J. Solids Struct. 50:2050–2060.CrossrefWeb of ScienceGoogle Scholar

  • Sause, M.G.R., Gribov, A., Unwin, A.R., Horn, S. (2012a) Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit. Lett. 33:17–23.Web of ScienceGoogle Scholar

  • Sause, M.G.R., Müller, T., Horoschenkoff, A., Horn, S. (2012b) Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos. Sci. Technol. 72:167–174.CrossrefWeb of ScienceGoogle Scholar

  • Sonderegger, W., Alter, P., Niemz, P. (2008) Investigations on selected properties of tonal wood of spruce from Grisons. Holz Roh Werkst. 66:345–354.Web of ScienceCrossrefGoogle Scholar

  • Stephens, R.W.B., Pollock, A.A. (1971) Waveforms and frequency spectra of acoustic emission. J. Acoust. Soc. Am. 50:904–910.CrossrefGoogle Scholar

  • Tou, J.T. (1979) DYNOC – a dynamic optimal cluster-seeking technique. Int. J. Comput. Inform. Sci. 8:41–547.Google Scholar

  • Tyree, M.T., Sperry, J.S. (1989) Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter. Plant Cell Environ. 12:371–382.CrossrefGoogle Scholar

  • Wagenführ, R. Holzatlas. Fachbuchverlag, Leipzig, 2000. pp. 177–178.Google Scholar

  • Zauner, M., Keunecke, D., Mokso, R., Stampanoni, M., Niemz, P. (2012) Synchrotron-based tomographic microscopy (SbTM) of wood: development of a testing device and observation of plastic deformation of uniaxially compressed Norway spruce samples. Holzforschung 66:973–979.Web of ScienceGoogle Scholar

About the article

Corresponding author: Franziska Baensch, ETH Zurich – Institute for Building Materials, CH-8093 Zürich, Switzerland e-mail:


Received: 2014-03-10

Accepted: 2014-08-15

Published Online: 2015-01-20

Published in Print: 2015-04-01


Citation Information: Holzforschung, Volume 69, Issue 3, Pages 357–365, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0072.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Malick Diakhate, Nicolas Angellier, Rostand Moutou Pitti, and Frédéric Dubois
Construction and Building Materials, 2017, Volume 156, Page 911
[2]
Malick Diakhate, Emilio Bastidas-Arteaga, Rostand Moutou Pitti, and Franck Schoefs
Engineering Fracture Mechanics, 2017, Volume 180, Page 254
[3]
Lidewei L. Vergeynst, Markus G.R. Sause, Niels J.F. De Baerdemaeker, Linus De Roo, Kathy Steppe, and Nathan Phillips
Tree Physiology, 2016, Volume 36, Number 6, Page 786

Comments (0)

Please log in or register to comment.
Log in