Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 69, Issue 6


Enhanced stability of PVA electrospun fibers in water by adding cellulose nanocrystals

Anna Sutka
  • Corresponding author
  • Institute of Design Technology, Riga Technical University, Azenes 18, Riga LV-1048, Latvia
  • Laboratory of Biomass Eco-Efficient Conversion, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga LV-1006, Latvia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andris Sutka
  • Institute of Silicate Materials, Riga Technical University, Azenes 14/24, Riga LV-1048, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergej Gaidukov / Martin Timusk / Janis Gravitis
  • Laboratory of Biomass Eco-Efficient Conversion, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga LV-1006, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvija Kukle
Published Online: 2015-04-14 | DOI: https://doi.org/10.1515/hf-2014-0277


The solubility of electrospun poly(vinyl alcohol) nanofiber mats (PVAES-NFM) is strongly influenced by loading with nanocellulose (NC). The NC was derived from hemp shives obtained by steam explosion autohydrolysis followed by water and alkaline extraction, ball milling, and ultrasonication treatments. It was demonstrated for the first time that PVAES-NFM does not disintegrate in aqueous medium after simple adding of NC without any additional chemical or physical modification (PVAES-NFMNC). The structural and thermal studies on PVAES-NFMNC indicated that enhanced stability in aqueous medium can be explained by interactions between surface groups of NC and PVA macromolecules as well as by reinforcing the effect of NCs. The experimental findings could be important for filtration applications in environments with high relative humidity.

Keywords: electrospinning; nanocellulose; nanocomposites; PVA; thermal properties


  • Angles, M.N., Dufresne, A. (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353.CrossrefGoogle Scholar

  • Bendahou, A., Kaddami, H., Dufresne, A. (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym. J. 46:609–20.CrossrefGoogle Scholar

  • Bolto, B., Tran, T., Hoang, M., Xie, Z. (2009) Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 34:969–981.CrossrefGoogle Scholar

  • Chakraborty, A., Sain, M., Kortschot, M. (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107.CrossrefGoogle Scholar

  • Chakraborty, A., Sain, M., Kortschot, M. (2006) Reinforcing potential of wood pulp derived microfibres in a PVA matrix. Holzforschung 60:53–58.CrossrefGoogle Scholar

  • Choi, Y., Simonsen, J. (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J. Nanosci. Nanotechnol. 6:633–639.Google Scholar

  • de Mesquita, J.P., Donnici, C.L., Teixeira I.F., Pereira F.V. (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr. Polym. 90:210–217.PubMedCrossrefGoogle Scholar

  • Freire, C.S.R., Fernandes, S.C.M., Silvestre, A.J.D., Neto, C.P. (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung 67:603–612.Web of ScienceCrossrefGoogle Scholar

  • Garcia de Rodriguez, N.L., Thielemans, W., Dufresne, A. (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270.CrossrefGoogle Scholar

  • Gaume, J., Taviot-Gueho, Ch., Cros, S., Rivaton, A., Thérias, S., Gardette, J.L. (2012) Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells Original Research Article Solar Energy. Mater. Sol. Cel. 99:240–249.Web of ScienceGoogle Scholar

  • Habibi, Y., Lucia, L.A., Rojas, O.J. (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Invited article. Chem. Rev. 110:3479–3500.Web of ScienceGoogle Scholar

  • Hassan, C.M., Peppas, N.A. (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 153:37–65.Google Scholar

  • Koski, A., Yim, K., Shivkumar. S. (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 58:493–497.CrossrefGoogle Scholar

  • Laka, M., Chernyavskaya, S., Treimanis, A. (2011) Performance of biopolymer films with reinforcing cellulosecontaining fillers from pine pulp and bark and birch sawdust. Holzforschung 65:639–642.CrossrefWeb of ScienceGoogle Scholar

  • Liu, D., Yuan, X., Bhattacharyya, D. (2012) The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J. Mater. Sci. 47:3159–3165.Web of ScienceCrossrefGoogle Scholar

  • Maloney, T.C. (2014) Network swelling of TEMPO-oxidized nanocellulose. Holzforschung. 69:207–213.Web of ScienceGoogle Scholar

  • Martinez-Sanz, M., Olsson, R.T., Lopez-Rubio, A., Lagaron, J.M. (2012) Development of bacterial cellulose nanowhiskers reinforced EVOH composites by electrospinning. J. Appl. Polym. Sci. 124:1398–1408.Web of ScienceGoogle Scholar

  • Medeiros, E.S., Mattoso, L.H., Ito, E.N., Gregorski, K.S., Robertson, G.H., Offeman, R.D., Wood, D.F., Orts, W.J. (2008) Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils. Polym. Eng. Sci. 2:231–242.Google Scholar

  • O’Connor, R.T., DuPre, E.F., Mitcham, D. (1958) Application of infrared absorption spectroscopy to investigations of cotton and modified cottons. Part 1: physical and crystalline modifications and oxidation. Textile Res. J. 28:382–392.Google Scholar

  • Paranhos, C.M., Soares, B.G., Oliveira, R.N., Pessan, L.A. (2007) Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol. Mater. Eng. 292:620–626.Google Scholar

  • Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J. (2010a) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Peresin, M.S., Habibi, Y., Vesterinen, A.H., Rojas, O.J. Pawlak, J.J., Seppala, J.V. (2010b) Effect of moisture on electrospun nanofibre composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477.Web of ScienceCrossrefGoogle Scholar

  • Peresin, M.M.S., Vesterinen, A.H., Habibi, Y., Johansson, L.S., Pawlak, J.J., Nevzorov, A.A., Rojas, O.J. (2014) Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties. J. Appl. Polym. Sci. 131:40334.Web of ScienceGoogle Scholar

  • Pyda M. SpringerMaterials; athas_0147 (Springer-Verlag GmbH, Heidelberg, 2014), http://materials.springer.com/polymerthermodynamics/docs/athas_0147. Accessed 2014.

  • Ramires, E.C., Dufresne, A. (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J. 10:9–16.Google Scholar

  • Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A. (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44: 2489–2498.CrossrefGoogle Scholar

  • Siro, I., Plackett, D. (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494.CrossrefGoogle Scholar

  • Sriupayo, J., Supaphol, P., Blackwell, J., Rujiravanit, R. (2005) Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46:5637–5644.CrossrefGoogle Scholar

  • Strawhecker, K.E., Manias, E. (2000) Structure and properties of poly(vinyl alcohol)/Naþ montmorillonite nanocomposites. Chem. Mater. 12:2943–2949.CrossrefGoogle Scholar

  • Sutka, A., Kukle, S., Gravitis, J., Milašius, R., Malašauskiene, J. (2013) Nano-fibre electro-spinning poly-(vinyl alcohol) and cellulose composite mats obtained by use of a cylindrical electrode. Adv. Mater. Sci. Eng. 2013, article number 932636.CrossrefGoogle Scholar

  • Wang, X., Chen, X., Yoon, K., Fang, D., Hsiao, B.S., Chu, B. (2005) High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ. Sci. Technol. 39:7684–7691.CrossrefPubMedGoogle Scholar

  • Yalcinkaya, B., Callioglu, F.C., Yener, F. (2014) Measurement and analysis of jet current and jet life in roller electrospinning of polyurethane. Textile Res. J. 84:1720–1728.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Anna Sutka, Institute of Design Technology, Riga Technical University, Azenes 18, Riga LV-1048, Latvia, e-mail: ; and Laboratory of Biomass Eco-Efficient Conversion, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga LV-1006, Latvia

Received: 2014-09-30

Accepted: 2015-02-18

Published Online: 2015-04-14

Published in Print: 2015-08-01

Citation Information: Holzforschung, Volume 69, Issue 6, Pages 737–743, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0277.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shenming Cai, Yan Li, Hong-Yuan Liu, and Yiu-Wing Mai
Composites Science and Technology, 2019, Volume 181, Page 107673
O Platnieks, S Gaidukovs, and A Barkane
IOP Conference Series: Materials Science and Engineering, 2019, Volume 500, Page 012031
Kamonthip Singbumrung, Kanjana Motina, Penwisa Pisitsak, Pisutsaran Chitichotpanya, Sujitra Wongkasemjit, and Thitirat Inprasit
Fibers and Polymers, 2018, Volume 19, Number 7, Page 1373
Subrata Mondal
Polymer-Plastics Technology and Engineering, 2017
Anna Šutka, Martin Järvekülg, Andris Šutka, Ivo Heinmaa, Uno Mäeorg, Krisjanis Smits, and Martin Timusk
Polymer Composites, 2016
Anna Šutka, Mikk Antsov, Martin Järvekülg, Meeri Visnapuu, Ivo Heinmaa, Uno Mäeorg, Sergei Vlassov, and Andris Šutka
Journal of Applied Polymer Science, 2017, Volume 134, Number 2

Comments (0)

Please log in or register to comment.
Log in