Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 69, Issue 7

Issues

Magnetic resonance imaging study of water absorption in thermally modified pine wood

Muhammad Asadullah Javed / Päivi M. Kekkonen / Susanna Ahola / Ville-Veikko Telkki
Published Online: 2014-12-06 | DOI: https://doi.org/10.1515/hf-2014-0183

Abstract

Thermal modification is an environmentally friendly process that enhances the lifetime and properties of timber. In this work, the absorption of water in pine wood (Pinus sylvestris) samples, which were modified by the ThermoWood process, was studied by magnetic resonance imaging (MRI) and gravimetric analysis. The modification temperatures were varied between 180°C and 240°C. The data shows that the modification at 240°C and at 230°C decreases the water absorption rate significantly and slightly, respectively, while lower temperatures do not have a noticeable effect. MR images reveal that free water absorption in latewood (LW) is faster than in earlywood (EW), but in the saturated sample, the amount of water is greater in EW. Individual resin channels can be resolved in the high-resolution images, especially in LW regions of the modified samples, and their density was estimated to be (2.7±0.6) mm-2. The T2 relaxation time of water is longer in the modified wood than in the reference samples due to the removal of resin and extractives in the course of the modification process.

Keywords: gravimetric analysis; magnetic resonance imaging; moisture content; nuclear magnetic resonance; Pinus sylvestris; T2 relaxation time; thermal modification; water absorption

References

  • Almeida, G., Gagné, S., Hernández, R.E. (2007) A NMR study of water distribution in hardwoods at several equilibrium moisture contents. Wood Sci. Technol. 41:293–307.CrossrefGoogle Scholar

  • Araujo, C.D., Mackay, A.L., Hailey, J.R.T., Whittall, K.P., Le, H. (1992) Proton magnetic resonance techniques for characterization of water in wood: application to white Spruce. Wood Sci. Technol. 26:101–113.CrossrefGoogle Scholar

  • Blümich, B. NMR Imaging of Materials. Clarendon Press, Oxford, 2000.Google Scholar

  • Brownstein, K.R., Tarr, C.E. (1979) Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A 19:2446–2453.CrossrefGoogle Scholar

  • Callaghan, P.T. Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford, 1991.Google Scholar

  • Carslaw, H.S., Jaeger, J.C. (1959) Conduction of Heat in Solids. Clarendon Press, Oxford. pp. 99–102.Google Scholar

  • Cox, J., McDonald, P.J., Gardiner, B.A. (2010) A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange. Holzforschung 64:259–266.CrossrefGoogle Scholar

  • Dvinskikh, S.V., Henriksson, M., Berglund, L.A., Furó, I. (2011) A multinuclear magnetic resonance imaging (MRI) study of wood with absorbed water: estimating bound water concentration and local wood density. Holzforschung 65:103–107.CrossrefGoogle Scholar

  • Elder, T., Houtman, C. (2013) Time-domain NMR study of the drying of hemicellulose extracted aspen (Populus tremuloides Michx.). Holzforschung 67:405–411.Google Scholar

  • Fantazzini, P., Maccotta, A., Gombia, M., Garavaglia, C., Brown, R.J.S., Brai, M. (2006) Solid-liquid nuclear magnetic resonance relaxation and signal amplitude relationships with ranking of seasoned softwoods and hardwoods. J. Appl. Phys. 100:074907.CrossrefGoogle Scholar

  • Finnish ThermoWood Association. ThermoWood Handbook, 2003. www.thermowood.fi/brochurestexts. Accessed Jan, 2014.

  • Gil, A.M., Lopes, M.H., Neto, P., Callaghan, P.T. (2000) An NMR microscopy study of water absorption in cork. J. Mat. Sci. 35:1891–1900.CrossrefGoogle Scholar

  • Gombia, M., Bortolotti, V., Brown, R.J.S., Camaiti, M., Fantazzini, P. (2008) Models of water imbibition in untreated and treated porous media validated by quantitative magnetic resonance imaging. J. Appl. Phys. 103:094913.CrossrefGoogle Scholar

  • Hameury, S., Sterley, M. (2006) Magnetic resonance imaging of moisture distribution in Pinus sylvestris L. exposed to daily indoor relative humidity fluctuations. Wood Mater. Sci. Eng. 1:116–126.CrossrefGoogle Scholar

  • Hartley, I.D., Kamke, F.A., Peemoeller, H. (1994) Absolute moisture content determination of aspen wood below the fiber saturation point using pulsed NMR. Holzforschung 48:474–479.CrossrefGoogle Scholar

  • Hernández, R.E., Cáceres, C.B. (2010) Magnetic resonance microimaging of liquid water distribution in sugar maple wood below fiber saturation point. Wood Fiber Sci. 42:259–272.Google Scholar

  • Hietala, S., Maunu, S.L., Sundholm, F., Jämsä, S., Viitaniemi, P. (2002) Structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56:522–528.Google Scholar

  • Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes. Wiley, Chichester, 2006.Google Scholar

  • Hoffmeyer, P., Engelund, E.T., Thygesen, L.G. (2011) Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions. Holzforschung 65:875–882.CrossrefGoogle Scholar

  • International ThermoWood Association. ThermoWood Production Statistics, 2014. www.thermowood.fi/latestnews. Accessed XX Month, 20XX.

  • Johannessen, E.H., Hansen, E.W., Rosenholm, J.B. (2006) Fluid self-diffusion in Scots Pine sapwood tracheid cells. J. Phys. Chem. B 110:2427–2434.CrossrefGoogle Scholar

  • Keeler, J. Understanding NMR Spectroscopy. Wiley, Chichester, 2010.Google Scholar

  • Kekkonen, P.M., Telkki, V.-V., Jokisaari, J. (2009) Determining the highly anisotropic cell structures of Pinus Sylvestris in three orthogonal directions by PGSTE NMR of absorbed free water and methane. J. Phys. Chem. B 113:1080–1084.CrossrefGoogle Scholar

  • Kekkonen, P.M., Telkki, V.-V., Jokisaari, J. (2010) Effect of thermal modification of wood cell structures observed by pulsed-field-gradient stimulated-echo NMR. J. Phys. Chem. C 114:18693–18697.CrossrefGoogle Scholar

  • Kekkonen, P.M., Ylisassi, A., Telkki, V.-V. (2014) Absorption of water in thermally modified pine wood as studied by NMR. J. Phys. Chem. C 118:2146–2153.CrossrefGoogle Scholar

  • Kettunen, P.O. Structure and Properties of Wood. Trans Tech Publications Ltd, Durnten-Zurich, 2006.Google Scholar

  • Kosiková, B., Hricovíni, M., Cosentino, C. (1999) Interaction of lignin and polysaccharides in beech wood (Fagus Sylvatica) during drying processes. Wood Sci. Technol. 33:373–380.CrossrefGoogle Scholar

  • Kärkkäinen, M. Puutiede (Wood Science). (1985) Arvi A. Karisto Oy:n kirjapaino, Hämeenlinna, pp. 38.Google Scholar

  • Labbé, N., De Jéso, B., Lartigue, J.C., Daudé, G., Pétraud, M., Ratier, M. (2002) Moisture content and extractive materials in maritime pine wood by low field 1H NMR. Holzforschung 56:25–31.Google Scholar

  • Macmillan, M.B., Schneider, M.H., Sharp, A.R., Balcom, B.J. (2002) Magnetic resonance imaging of water concentration in low moisture content wood. Wood Fiber Sci. 34:276–286.Google Scholar

  • Maunu, S.L. (2002) NMR studies of wood and wood products. Prog. Nucl. Magn. Res. Sp. 40:151–174.CrossrefGoogle Scholar

  • Mazela, B., Kowalczuk, J., Ratajczak, I., Szentner, K. (2014) Moisture content (MC) and multinuclear magnetic resonance imaging (MRI) study of water absorption effect on wood treated with aminofunctional silane. Eur. J. Wood Prod. 72:243–248.CrossrefGoogle Scholar

  • Meder, R., Codd, S.L., Franich, R.A., Callaghan, P.T., Pope, J.M. (2003) Observation of anisotropic water movement in Pinus radiata D. Don wood using magnetic resonance micro-imaging. Holz Roh-Werkst 61:251–256.CrossrefGoogle Scholar

  • Menon, R.S., MacKay, A.L., Hailey, J.R.T., Bloom, M., Burgess, A.E., Swanson, J.S. (1987) An NMR determination of the physiological water distribution in wood during drying. J. Appl. Polymer Sci. 33:1141–1155.CrossrefGoogle Scholar

  • Menon, R.S., Mackay, A.L., Filbotte, S., Hailey, J.R. (1989) Quantitative separation of NMR images of water in wood on the basis of T2. J. Magn. Reson. 82:205–210.Google Scholar

  • Merela, M., Oven, P., Serša, I., Mikac, U. (2009) A single point NMR method for an instantaneous determination of the moisture content of wood. Holzforschung 63:348–351.Google Scholar

  • Metsä-Kortelainen, S., Paajanen, L., Viitanen, H. (2011) Durability of thermally modified Norway spruce and Scots pine in above-ground conditions. Wood Mater. Sci. Eng. 6:105–114.Google Scholar

  • Quick, J.J., Hailey, J.R.T., Mackay, A.L. (1990) Radial moisture profiles of cedar sapwood during drying – a proton magnetic resonance study. Wood Fiber Sci. 22:404–412.Google Scholar

  • Riggin, M.T., Sharp, A.R., Kaiser, R. (1979) Transverse NMR relaxation of water in wood. J. Appl. Polym. Sci. 23:3147–3154.CrossrefGoogle Scholar

  • Rosenkilde, A., Glover, P. (2002) High resolution measurement of the surface layer moisture content during drying of wood using a novel magnetic resonance imaging technique. Holzforschung 56:312–317.Google Scholar

  • Sharp, A.R., Riggin, M.T., Kaiser, R., Schneider, M.H. (1978) Determination of moisture content of wood by pulsed nuclear magnetic resonance. Wood Fiber Sci. 10:74–81.Google Scholar

  • Siau, J.S. Transport Processes in Wood, Springer-Verlag, Berlin, 1984.Google Scholar

  • Sivonen, H., Maunu, S.L., Sundholm, F., Jämsä, S., Viitaniemi, P. (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654.Google Scholar

  • Telkki, V.-V., Jokisaari, J. (2009) Determination of the structure of wood from the self-diffusion probability densities of a fluid observed by position exchange NMR spectroscopy. Phys. Chem. Chem. Phys. 11:1167–1172.CrossrefPubMedGoogle Scholar

  • Telkki, V.-V., Saunavaara, J., Jokisaari, J. (2010) Time-of-flight remote detection MRI of thermally modified wood. J. Magn. Reson. 202:78–84.CrossrefGoogle Scholar

  • Telkki, V.-V., Yliniemi, M., Jokisaari, J. (2013) Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions. Holzforschung 67:291–300.Google Scholar

  • Thygesen, L.G., Elder, T. (2008) Moisture in untreated, acetylated and furfurylated Norway spruce studied during drying using time domain NMR. Wood Fiber Sci. 40:309–320.Google Scholar

  • Tjeerdsma, B., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterization of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst. 56:149–153.CrossrefGoogle Scholar

  • Topgaard, D., Söderman, O. (2002) Self-diffusion of nonfreezing water in porous carbohydrate polymer systems studied with nuclear magnetic resonance. Biophys. J. 83:3596–3606.CrossrefPubMedGoogle Scholar

  • van Houts, J.H., Wang, S., Shi, H., Pan, H., Kabalka, G.W. (2004) Moisture movement and thickness swelling in oriented strandboard, Part 1. Analysis using nuclear magnetic resonance microimaging. Wood Sci. Technol. 38:617–628.CrossrefGoogle Scholar

  • van Houts, J.H., Wang, S., Shi, H., Kabalka, G.W. (2006) Moisture movement and thickness swelling in oriented strandboard. Part 2: Analysis using nuclear magnetic resonance imaging body scanner. Wood Sci. Technol. 40:437–443.CrossrefGoogle Scholar

  • Viitaniemi, P., Jämsä, S., Ek, P., Viitanen, H. (1997) Method for improving biodegradation resistance and dimensional stability of cellulosic products. U.S. Patent. US 5678324.Google Scholar

  • Washburn, E.W. (1921) The dynamics of capillary flow. Phys. Rev. 17:273–283.CrossrefGoogle Scholar

  • Wycoff, W., Pickup, S., Cutter, B., Miller, W., Wong, T.C. (2000) The determination of the cell size in wood by nuclear magnetic resonance diffusion techniques. Wood Fiber Sci. 32:72–80.Google Scholar

  • Xu, Y., Araujo, C.D., MacKay, A.L., Whittall, K.P. (1996) Proton spin-lattice relaxation in wood- T1 related to local specific gravity using a fast-exchange model. J. Magn. Reson. Ser. B 110:55–64.CrossrefGoogle Scholar

  • Zhang, M., Wang, X., Gazo, R. (2013) Water states in yellow poplar during drying studied by time-domain nuclear magnetic resonance. Wood Fiber Sci. 45:423–428.Google Scholar

About the article

Corresponding author: Ville-Veikko Telkki, NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland, Phone: +358-294-481309, e-mail:


Received: 2014-06-25

Accepted: 2014-11-04

Published Online: 2014-12-06

Published in Print: 2015-09-01


Citation Information: Holzforschung, Volume 69, Issue 7, Pages 899–907, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0183.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yulei Gao, Kang Xu, Hui Peng, Jiali Jiang, Rongjun Zhao, and Jianxiong Lu
Applied Sciences, 2018, Volume 9, Number 1, Page 78
[2]
Mojca Žlahtič Zupanc, Urša Mikac, Igor Serša, Maks Merela, and Miha Humar
Cellulose, 2018
[3]
Emil Engelund Thybring, Maija Kymäläinen, and Lauri Rautkari
Wood Science and Technology, 2017
[5]
Yeonjung Han, Yonggun Park, Yoon-Seong Chang, Hyunwoo Chung, Chang-Deuk Eom, and Hwanmyeong Yeo
Holzforschung, 2017, Volume 0, Number 0
[6]
Marie Bonnet, Denis Courtier-Murias, Paméla Faure, Stéphane Rodts, and Sabine Care
Holzforschung, 2017, Volume 71, Number 6
[7]
Roger H. Newman, Robert A. Franich, Roger Meder, Stefan J. Hill, Hank Kroese, David Sandquist, Jason P. Hindmarsh, Martin W. Schmid, Johannes Fuchs, and Volker C. Behr
The Journal of Supercritical Fluids, 2016, Volume 111, Page 36

Comments (0)

Please log in or register to comment.
Log in