Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 69, Issue 7

Issues

The toughness of hygrothermally modified wood

COST Action FP0904 2010-2014: Thermo-hydro-mechanical wood behavior and processing

Mark Hughes / Callum Hill
  • JCH Industrial Ecology Limited, Bangor, Gwynedd, UK
  • Norsk Institutt for Skog og Landksap, Ås, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Pfriem
  • University for Sustainable Development Eberswalde – University of Applied Sciences, Eberswalde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-29 | DOI: https://doi.org/10.1515/hf-2014-0184

Abstract

The mechanical properties of thermally modified wood are discussed with regard to toughness. The molecular origins of the mechanical properties and, in particular, the role of the hemicelluloses are considered. The important role of water and its interaction with the cell wall components is also examined. The properties are discussed from the point of view of composite theory, with the three main macromolecular components acting as reinforcement, matrix and interfacial coupling agent. The important role that hemicelluloses play as a coupling agent between the cellulosic microfibril reinforcement and the lignin-rich matrix is highlighted. Destruction of the hemicelluloses during the thermal modification process has a profound effect upon the mechanical behaviour.

Keywords: hemicelluloses; hygrothermal modification; interface; toughness

References

  • Åkerholm, M., Salmén, L. (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969.CrossrefGoogle Scholar

  • Anderson, T.L. Fracture mechanics: fundamentals and applications, 2nd ed. CRC Press Inc, Boca Raton, 1995.Google Scholar

  • Arnold, M. (2010) Effect of moisture on the bending properties of thermally modified beech and spruce. J. Mater. Sci. 45:669–680.CrossrefGoogle Scholar

  • Ashby, M.F., Easterling, K.E., Harrysson, R., Maiti, S.K. (1985) The fracture toughness of woods. Proc. R. Soc. Lond. A 398:261–280.Google Scholar

  • Bal, B.C. (2014) Some physical and mechanical properties of thermally modified juvenile and mature black pine wood. Eur. J. Wood Prod. 72:61–66.CrossrefGoogle Scholar

  • Bal, B.C., Bektas, I. (2013) The effects of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis. Dry. Technol. 31:479–485.CrossrefGoogle Scholar

  • Bekhta, P, Niemz, P. (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546.CrossrefGoogle Scholar

  • Booker, R.E. (1995) The reason for the microfibril orientations in the cell wall of trees. Recent Advances in Wood Anatomy. Eds. L.A. Donaldson, A.P. Singh, B.G. Butterfield, J. Whitehouse. NZ Forest Research Institute Ltd, Rotorua, New Zealand. 273–282.Google Scholar

  • Booker, R.E., Sell, J. (1998) The Nanostructure of the cell wall of softwood and its functions in a living tree. Holz Roh. Werkst. 56:1–8.CrossrefGoogle Scholar

  • Boonstra, M.J., Rijsdijk, J.F., Sander, C., Kegel, E., Tjeerdsma, B.F., Militz, M., van Acker, J., Stevens, M. (2006a) Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas Cienc. Tecnol. 8:192–207.Google Scholar

  • Boonstra, M.J., Rijsdijk, J.F. Sander, C., Kegel, E. Tjeerdsma, B., Militz, H. van Acker, J. Stevens, M. (2006b) Microstructural and physical aspects of heat treated wood. Part 2 Hardwoods. Maderas Cienc. Tecnol. 8:209–218.CrossrefGoogle Scholar

  • Boonstra, M.J., van Acker, J., Tjeerdsma, B.F., Kegel, E.V. (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 64:679–690.CrossrefGoogle Scholar

  • Borrega, M., Karenlampi, P.P. (2008) Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh Werkst 66:63–69.CrossrefGoogle Scholar

  • Borrega, M., Karenlampi, P.P. (2010) Three mechanisms affecting the mechanical properties of spruce wood dried at high temperature. J. Wood Sci. 56:87–94.CrossrefGoogle Scholar

  • Candelier, K., Chaouch, M., Dumarçay, S., Pétrissans, A., Pétrissans, M., Gérardin, P. (2011) Utilization of thermodesorption coupled to GC-MS to study stability of different wood species to thermodegradation. J. Anal. Appl. Pyrolysis 92:376–383.CrossrefGoogle Scholar

  • Candelier, K., Dumarçay, S., Pétrissans, A., Pétrissans, M. Kamdem, P., Gérardin, P. (2013) Thermodesorption coupled to GC-MS to characterize volatiles formation kinetic during wood thermodegradation. J. Anal. Appl. Pyrolysis 101:96–102.CrossrefGoogle Scholar

  • Carpita, N.C., Defernez, M., Findlay, K., Wells, B., Shoue, D.A., Catchpole, G., Wilson, R.H., McCann, M.C. (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 127:551–565.PubMedCrossrefGoogle Scholar

  • Cave, I., Hutt, L. (1968) The anisotropic elasticity of the plant cell wall. Wood Sci. Technol. 2:268–278.CrossrefGoogle Scholar

  • Chaouch, M., Dumarçay, S., Pétrissans, A., Pétrissans, M., Gérardin, P. (2013) Effect of heat treatment intensity on some conferred properties of different European softwood and hardwood species. Wood Sci. Technol. 47:663–673.CrossrefGoogle Scholar

  • Cook, J., Gordon, J.E., Evans, C.C., Marsh, D.M. (1964) A mechanism for the control of crack propagation in all-brittle systems. Proc. R. Soc. Lond. A 282:508–520.Google Scholar

  • Du, X., Gellerstedt, G., Li, J. (2013) Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J. 74:328–338.CrossrefPubMedGoogle Scholar

  • Dundar, T., Buyuksari, U., Avci, E., Akkilic, H. (2012) Effect of heat treatment on the physical and mechanical properties of compression and opposite wood of black pine. Bioresources 7:5009–5018.CrossrefGoogle Scholar

  • Dervilly-Pinel, G., Thibault, J., Saulnier, L. (2001) Experimental evidence for a semi-flexible conformation for arabinoxylans. Carbohydr. Res. 330:365–372.Google Scholar

  • Dinwoodie, J.M. (1965) Tensile strength of individual compression wood fibres and its influence on properties of paper. Nature 205:763–764.Google Scholar

  • Eichhorn, S., Young, R. (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207.CrossrefGoogle Scholar

  • Esteves, B.M., Pereira, H.M. (2009) Wood modification by heat treatment: a review. Bioresources 4:370–404.Google Scholar

  • Esteves, B., Velez Marques, A., Domingos, I., Pereira, H. (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 41:193–207.CrossrefGoogle Scholar

  • Fengel, D., Wegener, D. Wood: Chemistry Ultrastructure Reactions. Walter de Gruyter, Berlin, 2003.Google Scholar

  • Gibson, L.J., Ashby, M.F. Cellular Solids: Structure and Properties. Pergamon Press, Oxford, New York, 1988.Google Scholar

  • Gordon, J.E. The New Science of Strong Materials. Penguin Books, London, 1976.Google Scholar

  • Gordon, J.E., Jeronimidis, G. (1974) Work of fracture of natural cellulose. Nature 252:116.CrossrefGoogle Scholar

  • Gordon, J.E., Jeronimidis, G.J., Richardson, M.O.W. (1980) Composites with high work of fracture. Phil. Trans. R. Soc. Lond. A 294:545–550.Google Scholar

  • Gu, J., Catchmark, M. (2013) The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose 20:1613–1627.CrossrefGoogle Scholar

  • Hakkou, M., Pétrissans, M., Gérardin, P., Zoulalian, A. (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym. Degrad. Stabil. 91:393–397.CrossrefGoogle Scholar

  • Hill, C.A.S. Wood Modification: Chemical, Thermal and other Processes. John Wiley and Sons, Chichester, Sussex, UK, 2006.Google Scholar

  • Hill, C.A.S., Ramsay, J., Keating, B., Laine, K., Rautkari, L., Hughes, M., Constant, B. (2012) The water vapour sorption properties of thermally modified and densified wood. J. Mater. Sci. 47:3191–3197.CrossrefGoogle Scholar

  • Hintertoisser, B., Åkerholm, M., Salmén, L. (2001) Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr. Res. 334:27–37.Google Scholar

  • Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., Pichette, A. (2012) Changes in wettability of heat-treated wood due to artificial weathering. Wood Sci. Technol. 46:1215–1237.CrossrefGoogle Scholar

  • Hull, D., Clyne, T.W. An Introduction to Composite Materials. Cambridge University Press, Cambridge, UK, 1996.Google Scholar

  • Jarvis, M. (2009) Plant cell walls: supramolecular assembly, signalling and stress. Struct. Chem. 20:245–253.CrossrefGoogle Scholar

  • Jayne, B.A. (1960) Some mechanical properties of wood fibres in tension. Forest Prod. J. 10:316–322.Google Scholar

  • Jeronimidis, G. (1976) The fracture of wood in relation to its structure. In: Wood Structure in Biological and Technological Research. Eds. Baas, P., Bolton, A.J., Catling, D. Leiden Botanical Series No. 3, Leiden University Press, The Hague, pp. 253–265.Google Scholar

  • Jeronimidis, G. (1980) The fracture behaviour of wood and the relations between toughness and morphology. Proc. R. Soc. Lond. B 208:447–460.Google Scholar

  • Joscak, T., Mamonova, M., Babiak, M., Teischinger, A., Müller, U. (2007) Effects of high temperature drying in nitrogen atmosphere on mechanical and colour properties of Norway spruce. Holz Roh Werkst 65:285–291.CrossrefGoogle Scholar

  • Kabel, M., van den Borne, H., Vincken, J-P., Voragen, A., Schols, H. (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr. Polym. 69:94–105.CrossrefGoogle Scholar

  • Kacikova, D., Kacik, F., Cabalova, I., Durkovic, J. (2013) Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresource Technol. 144:669–674.CrossrefGoogle Scholar

  • Kamdem, D.P., Pizzi, A., Jermannaud, A. (2002) Durability of heat-treated wood. Holz Roh Werkst. 60:1–6.CrossrefGoogle Scholar

  • Karinkanta, P., Illikainen, M., Niinimäki, J. (2014) Effect of mild torrefaction on pulverization of Norway spruce (Picea abies) by oscillatory ball milling: particle morphology and cellulose crystallinity. Holzforschung 68:337–343.CrossrefGoogle Scholar

  • Keunecke, D., Stanzl-Tschegg, S., Niemz, P. (2007) Fracture characterisation of yew (Taxus baccata L.) and spruce (Picea abies [L.] Karst.) in the radial-tangential and tangential-radial crack propagation system by a micro wedge splitting test. Holzforschung 61:582–588.CrossrefGoogle Scholar

  • Knott, J.F. Fundamentals of Fracture Mechanics. Butterworths, London, 1973.Google Scholar

  • Konas, P., Buchar, J., Severa, L. (2009) Study of correlation between the fractal dimension of wood anatomy structure and impact energy. Eur. J. Mech. A-Solid 28:545–550.CrossrefGoogle Scholar

  • Koshijima, T., Watanabe, T. Association Between Lignin and Carbohydrates in Wood and other Plant Tissues. Springer, Berlin, 2003.Google Scholar

  • Larsen, F., Ormarsson, S. (2014) Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs. Holzforschung 68:133–140.CrossrefGoogle Scholar

  • Levy, S., York, W.S., Stuike-Prill, R., Meyer, B., Staehelin, L.A. (1991) Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding. Plant J. 1:195–215.CrossrefPubMedGoogle Scholar

  • Lopez, M., Bizot, H., Chambat, G., Marais, M. Zykwinska, A., Ralet, M. Driguez, H., Buleon, A. (2010) Enthalpic studies of xyloglucan-cellulose interactions. Biomacromol. 11:1417–1428.CrossrefGoogle Scholar

  • Lucas, P.W., Choong, M.F., Tan, H.T., Turner, I.M., Berrick, A.J. (1991) The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L. (Guttiferae). Phil. Trans. R. Soc. Lond. B 334:95–106.Google Scholar

  • Lucas, P.W., Darvell, B.W., Lee, K.D., Yuen, T.D.B., Choong, M.F. (1995) The toughness of plant cell walls. Phil. Trans. R. Soc. Lond. B 348:363–372.Google Scholar

  • Lucas, P.W., Tan, H.T.W., Cheng, P.Y. (1997) The toughness of secondary cell wall and woody tissue. Phil. Trans. R. Soc. Lond. B 342–352.Google Scholar

  • Majano-Majano, A., Hughes, M., Fernandez-Cabo, J.L. (2012) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci. Technol. 46:5–21.CrossrefGoogle Scholar

  • Mark, R.E. Cell Wall Mechanics of Tracheids. New Haven, Yale University Press, 1967.Google Scholar

  • Martin, J. Materials for Engineering. Institute of Materials, London, 1996.Google Scholar

  • Murata, K., Watanabe, Y., Nakano, T. (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials 6:4186–4197.CrossrefGoogle Scholar

  • Navi, P., Stanzl-Tschegg, S.E. (2009) Micromechanics of creep and relaxation of wood. A review COST Action E35 2004–2008: wood machining – micromechanics and fracture. Holzforschung 63:186–195.Google Scholar

  • Oltean, L., Teischinger, A., Hansmann, C. (2011) Influence of low and moderate temperature kiln drying schedules on specific mechanical properties of Norway spruce wood. Eur. J. Wood Prod. 69:451–457.CrossrefGoogle Scholar

  • Page, D.H. (1976) A note on the cell-wall structure of softwood tracheids. Wood Fiber 7:246–248.Google Scholar

  • Page, D.H., El-Hosseiny, F., Winkler, K. (1971) Behaviour of single wood fibres under axial tensile strain. Nature 229:252–253.Google Scholar

  • Page, D.H., El-Hosseiny, F., Winkler, K., Bain, R. (1972) The mechanical properties of single wood-pulp fibres. Part 1: a new approach. Pulp Pap-Canada 73:72–77.Google Scholar

  • Parton, V.Z. Fracture Mechanics: From Theory to Practice. Gordon and Breach, Philadelphia, 1992.Google Scholar

  • Patton-Mallory, M., Cramer, S.M. (1987) Fracture mechanics: a tool for predicting wood component strength. Forest Prod. J. 37:39–47.Google Scholar

  • Pelaez-Samaniego, M.P., Yadama, V., Lowell, E., Espinoza-Herrera, R. (2013) A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 47:1285–1319.CrossrefGoogle Scholar

  • Peters, J., Fischer, K., Fischer, S. (2008) Characterization of emissions from thermally modified wood and their reduction by chemical treatment. BioResources 3:491–502.Google Scholar

  • Pfriem, A., Wagenführ, A. (2008) Feuchtigkeitsabhängigkeit des elastizitätsmoduls thermisch modifizierter und nativer fichte (Picea abies (L.) Karst.) Holz Roh. Werkst. 66:77–79.CrossrefGoogle Scholar

  • Pfriem, A., Zauer, M., Wagenführ, A. (2010a) Alteration of the unsteady sorption behaviour of maple (Acer pseudoplatanus L.) and spruce (Picea abies (L.) Karst.) due to thermal modification. Holzforschung 64:235–241.CrossrefGoogle Scholar

  • Pfriem, A., Buchelt, B., Zauer, M., Wagenführ, A. (2010b) Comparative analysis of thermally modified and native spruce loaded perpendicular to the grain. Eur. J. Wood Prod. 68:267–270.CrossrefGoogle Scholar

  • Phuong, L.X., Shida, S., Saito, Y. (2007) Effects of heat treatment on brittleness of Styrax tonkinensis wood. J. Wood Sci. 53:181–186.CrossrefGoogle Scholar

  • Piggott, M.R. Load-bearing Fibre Composites. Pergamon, Oxford, 1980.Google Scholar

  • Pleschberger, H., Hansmann, C., Müller, U., Teischinger, A. (2013) Fracture energy approach for the identification of changes in the wood caused by the drying processes. Wood Sci. Tech. 47:1323–1334.CrossrefGoogle Scholar

  • Rautkari, L., Honkanen, J., Hill, C.A.S., Ridley-Ellis, D., Hughes, M. (2014) Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180 degrees C. Eur. J. Wood Prod. 72:33–41.Google Scholar

  • Rapp, A.O., Brischke, C., Welzbacher, C.R. (2006) Interrelationship between the severity of heat treatments and sieve fractions after impact ball milling: a mechanical test for quality control of thermally modified wood. Holzforschung 60:64–70.CrossrefGoogle Scholar

  • Reiterer, A., Burgert, I., Sinn, G., Tschegg, S. (2002) The radial reinforcement of the wood structure and its implication on mechanical and fracture mechanical properties – a comparison between two tree species. J. Mater. Sci. 37:935–940.CrossrefGoogle Scholar

  • Repellin, V., Govin, A., Rolland, M., Guyonnet, R. (2010) Energy requirement for fine grinding of torrefied wood. Biomass Bioenerg. 34:923–930.CrossrefGoogle Scholar

  • Salmén, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. COST Action E35 2004–2008: wood machining – micromechanics and fracture. Holzforschung 63:121–129.Google Scholar

  • Scheller, H.V., Ulvskov, P. (2010) Hemicelluloses. Annu. Rev. Plant Biol. 61:263–289.PubMedCrossrefGoogle Scholar

  • Sinha, A., Gupta, R., Nairn, J.A. (2011) Thermal degradation of bending properties of structural wood and wood-based composites. Holzforschung 65:221–229.CrossrefGoogle Scholar

  • Smith, I., Landis, E., Gong, M. Fracture and Fatigue in Wood. John Wiley and Sons, Chichester, UK, 2003.Google Scholar

  • Smith, I., Snow, M., Asiz, A., Vasic, S. (2007) Failure mechanisms in wood-based materials: a review of discrete, continuum, and hybrid finite-element representations. Holzforschung 61:352–359.CrossrefGoogle Scholar

  • Spatz, H.-CH., Köhler, L., Niklas, K.J. (1999) Mechanical behaviour of plant tissues: composite materials or structures? J. Exp. Biol. 202:3269–3272.Google Scholar

  • Stanzl-Tschegg, S.E., Navi, P. (2009) Fracture behaviour of wood and its composites. A review COST Action E35 2004–2008: wood machining – micromechanics and fracture. Holzforschung 63:139–149.Google Scholar

  • Stanzl-Tschegg, S.E., Tschegg, E.K., Teischinger, A. (1994) Fracture energy of spruce wood after different drying procedures. Wood Fiber Sci. 26:467–478.Google Scholar

  • Stanzl-Tschegg, S.E., Tan, D.M., Tschegg, E.K. (1995) New splitting method for wood fracture characterization. Wood Sci. Technol. 29:31–50.Google Scholar

  • Stanzl-Tschegg, S.E., Tan, D.M., Tschegg, E.K. (1996) Mode II fracture tests on spruce wood. Mokuzai Gakkaishi 42:642–650.Google Scholar

  • Stanzl-Tschegg, S., Beikircher, W., Loidl, D. (2009) Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tests. Holzforschung 63:443–448.Google Scholar

  • Stevanic, J.S., Salmén, L. (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63:497–503.CrossrefGoogle Scholar

  • Sundqvist, B., Karlsson, O., Westermark, U. (2006) Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci. Tech. 40:549–56.CrossrefGoogle Scholar

  • Tenkanen, M., Tamminen, T., Hortling, B. (1999) Investigation of lignin-carbohydrate complexes in kraft pulps by selective enzymatic treatments. Appl. Microbiol. Biotechnol. 51:241–248.CrossrefGoogle Scholar

  • Wetzig, M., Sieverts, T., Bergemann, H., Niemz, P. (2012) Mechanical and physical properties of wood, heat-treated with the vacuum press dewatering method. Bauphysik 34:1–10.CrossrefGoogle Scholar

  • Whitney, S.E.C., Brigham, J.E., Darke, A.H., Reid, J.S.G., Gidley, M.J. (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J. 8:491–504.CrossrefGoogle Scholar

  • Widmann, R., Fernandez-Cabo, J.L., Steiger, R. (2012) Mechanical properties of thermally modified beech timber for structural purposes. Eur. J. Wood Prod. 70:775–784.CrossrefGoogle Scholar

  • Williams, J.G. (1981) Fracture mechanics of non-metallic materials. Phil. Trans. R. Soc. Lond. A 299:59–72.Google Scholar

  • Willems, W., Gérardin, P., Militz, H. (2013) The average carbon oxidation state of thermally modified wood as a marker for its decay resistance against Basidiomycetes. Polym. Degr. Stab. 98:2140–2145.CrossrefGoogle Scholar

  • Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:773–778.Google Scholar

About the article

Corresponding author: Mark Hughes, Department of Forest Products Technology, Aalto University, Espoo, Finland, Phone: +358-50-512-2615, e-mail:


Received: 2014-06-26

Accepted: 2015-03-27

Published Online: 2015-04-29

Published in Print: 2015-09-01


Citation Information: Holzforschung, Volume 69, Issue 7, Pages 851–862, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0184.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
C. Hill and G. Beck
International Wood Products Journal, 2017, Volume 8, Number 1, Page 50
[5]
Pekka Tukiainen and Mark Hughes
Journal of Materials Science, 2016, Volume 51, Number 3, Page 1437

Comments (0)

Please log in or register to comment.
Log in