Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Print + Online
See all formats and pricing
More options …
Volume 69, Issue 7

Issues

Compressed and moulded wood from processing to products

COST action FP0904 2010–2014: Thermo-hydro-mechanical wood behaviour and processing

Andreja Kutnar
  • Corresponding author
  • Andreja Kutnar, Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
  • Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, SI-6000 Koper, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dick Sandberg
  • Wood Science and Engineering, Luleå University of Technology, Forskargatan 1, SE-931 87 Skellefteå, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peer Haller
  • Institute of steel and timber structures, Technische Universität Dresden, Helmholtzstr. 10, DE-01069 Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-01 | DOI: https://doi.org/10.1515/hf-2014-0187

Abstract

This paper presents the state of the art of different wood densification processes as one emerging process technology. The main principles for the processes are discussed, such as bulk and surface densification, bending, moulding of shells and tubes, as well as methods for reducing the shape memory effect of densified wood. The main challenges are in the field of scaling up to industrial applications. To provide a better understanding with this regard, some relevant scientific results are presented. Furthermore, the discussion considers the contribution of thermo-hydro and thermo-hydro-mechanical processes to a sustainable and low-carbon economy.

Keywords: bending; densification; shaping; thermal treatment; thermo-hydro-mechanical treatment; thermo-hydro treatment; wood products

References

  • Ando, K., Onda, H. (1999a) Mechanism for deformation of wood as a honeycomb structure: I. Effect of anatomy on the initial deformation process during radial compression. J. Wood Sci. 45:120–126.CrossrefGoogle Scholar

  • Ando, K., Onda, H. (1999b) Mechanism for deformation of wood as a honeycomb structure. II. First buckling mechanism of cell walls under radial compression using the generalized model. J. Wood Sci. 45:250–253.CrossrefGoogle Scholar

  • Anon. (1938) Jicwood Limited. Flight 33:26.Google Scholar

  • Ashby, M.F. Materials Selection in Mechanical Design, 3rd ed., Butterworth-Heinemann, Elsevier, Amsterdam, Boston, 2005. pp. 603.Google Scholar

  • Blomberg, J., Persson, K. (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J. Wood Sci. 50:307–314.CrossrefGoogle Scholar

  • Blomberg, J., Persson, B., Bexell, U. (2006) Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking. Holzforschung 60:322–331.CrossrefGoogle Scholar

  • Bodig, J. (1963) The peculiarity of compression of conifers in radial direction. Forest Prod. J. 13:438.Google Scholar

  • Bodig, J. (1965) The effect of anatomy on the initial stress-strain relationship in transverse compression. Forest Prod. J. 15:197–202.Google Scholar

  • Bodig, J., Jayne, B.A. Mechanics of Wood and Wood Composites. Van Nostrand Reinhold, New York, 1982. pp. 712.Google Scholar

  • Brossman, J.R. (1931) Laminated wood products. U.S. Patent No. 1834895.Google Scholar

  • Buchelt, B., Dietrich, T., Wagenführ, A. (2014) Testing of set recovery of unmodified and furfurylated densified wood by means of water storage and alternating climate tests. Holzforschung 68:23–28.CrossrefGoogle Scholar

  • Cabrero, J., Heiduschke, A., Haller, P. (2010) Analytical assessment of the load carrying capacity of axially loaded wooden reinforced tubes. Compos. Struct. 92:2955–2965.Google Scholar

  • COST Action FP0904 (2014). Thermo-Hydro-Mechanical Wood Behaviour and Processing. http://www.cost-fp0904.ahb.bfh.ch/cost/en/home. Accessed December, 2014.

  • Dinwoodie, J.M. Timber, Its Nature and Behaviour. E & FN Spoon, London, New York, 2000.Google Scholar

  • Dwianto, W., Morooka, T., Norimoto, M., Kitajima, T. (1999) Stress relaxation of Sugi (Cryptomeria japonica D. Don) wood in radial compression under high T steam. Holzforschung 53:541–546.CrossrefGoogle Scholar

  • Esselen, G.J. (1934) Wood treatment and products. U.S. Patent No. 1952664.Google Scholar

  • Esteves, M.B., Pereira, H. (2009) Wood modification by heat treatment: a review. Bioresources 4:370–404.Google Scholar

  • Esteves, B., Marques, A., Domingos, I., Pereira, H. (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 41:193–207.CrossrefGoogle Scholar

  • European Commission (2009) Mainstreaming sustainable development into EU policies: 2009 Review of the European Union Strategy for Sustainable Development, Commission of the European Communities.Google Scholar

  • European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050. Communication. European Commission European Commission, Brussels. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52011DC0112:EN:NOT. Accessed December, 2014.

  • European Parliament Council (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Directive. Brussels: European Parliament European Parliament. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32008L0098:EN:NOT. Accessed December, 2014.

  • Exner, W.F., Lauboeck, G. Eds. (1922) Das Biegen des Holzes. Ein für Möbelfabrikanten, Wagen- und Shiffbauer, Böttcher und anderen wichtiges Verfahren. (Wood bending, an important process for furniture makers, wagon- and shipbuilder, coopers and others.) 4th ed. Verlag von Vernh. Friedrich Voigt, Leipzig. pp. 113.Google Scholar

  • Fang, C.H., Mariotti, N., Cloutier, A., Koubaa, A., Blanchet, P. (2012) Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Prod. 70:155–163.Google Scholar

  • Gong, M., Lamason, C., Li, L. (2010) Interactive effect of surface densification and post-treatment on aspen wood. J. Mater. Process Technol. 210:293–296.CrossrefGoogle Scholar

  • Haller, P. (2007) Concepts for textile reinforcements for timber structures. Material. Struct. 40:107–118.Google Scholar

  • Haller, P., Wehsener, J. (2004) Festigkeitsuntersuchungen an Fichtenpressholz (Mechanical properties of densified spruce). Holz Roh Werkst. 62:452–454.Google Scholar

  • Haller, P., Wehsener, J., Ziegler, S. (2002) Formteil aus Holz und Verfahren zu seiner Herstellung. (Wood profile and method for the production of the same.) Patent DE 10 2006 009 161 B4 2008.02.21, or WO 02/096608 A1.Google Scholar

  • Haller, P., Wehsener, J., Werner, T.E., Hartig, J. (2013a) Recent advancements for the application of moulded wooden tubes as structural elements. In: Material and Joints in Timber Structures. Eds. Aicher, S., Reinhard, H.W., Garrecht, H. Springer, Heidelberg. pp. 99–108.Google Scholar

  • Haller, P., Putzger, R., Wehsener, J., Hartig, J. (2013b) Formholzrohre – Stand der Forschung und Anwendungen. (Molded wood pipes – state of research and applications.) Bautechnik 90:34–41.CrossrefGoogle Scholar

  • Hanemann, M. (1917) Holzaufbereitungsverfahren. (Wood treatment process.) Deutsches Reichs Reichpatentamt, Patentschrift, No. 318197.Google Scholar

  • Hanemann, M. (1928) Verfahren und Vorrichtung zur Herstellung von weichbiegsamem Holz. (Method and apparatus for producing soft and flexible wood.) Deutsches Reichs Reichpatentamt, Patentschrift, No. 458923.Google Scholar

  • Heiduschke, A., Haller, P. (2009) Zum Tragverhalten gewickelter Formholzrohre unter axialem Druck. (On the structural behavior of moulded wood tubes under axial compression.) Der Bauingenieur 84:262–269.Google Scholar

  • Heiduschke, A., Haller, P. (2010) Fiber-reinforced plastic-confined wood profiles under axial compression. Struct. Eng. Int. 20:246–253.Google Scholar

  • Heiduschke, A., Kasal, B., Haller, P. (2009) Shake table tests of small- and full-scale laminated timber frames with moment connections. Bull Earthquake Eng. 7:323–339.Google Scholar

  • Hillis, W.E. (1984) High T and chemical effects on wood stability: part 1. General considerations. Wood Sci. Technol. 18: 281–293.Google Scholar

  • Hillis, W.E., Rozsa, A.N. (1978) The softening Ts of wood. Holzforschung 32:68–73.CrossrefGoogle Scholar

  • Hillis, W.E., Rozsa, A.N. (1985) High T and chemical effects on wood stability: part 2. The effect of heat on the softening of radiate pine. Wood Sci. Technol. 19:57–66.Google Scholar

  • Hoffmeyer, P. Failure of Wood as Influenced by Moisture and Duration of Load. State University of New York, College of Environmental Science and Forestry, Syracuse, 1990.Google Scholar

  • Holzveredelung G.m.b.H. in Berlin (1923) Verfahren zur Herstellung veredelten Holzes/A process for producing improved wood. Reichspatentamt, Patentschrift Nr. 357385, issued 19. May 1923.Google Scholar

  • Hsu, W.E., Schwald, W., Schwald, J., Shields, J.A. (1988) Chemical and physical changes required for producing dimensionally stable wood-based composites: part I. Steam pretreatment. Wood Sci. Technol. 22:281–289.CrossrefGoogle Scholar

  • Inoue, M., Norimoto, M., Otsuka, Y., Yamada, T. (1990) Surface compression of coniferous lumber, I. A new technique to compress the surface layer. Mok. Gak. 36:969–975.Google Scholar

  • Inoue, M., Norimoto, M., Tanahashi, M., Rowell, R.M. (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci. 25:224–235.Google Scholar

  • Inoue, M., Sekino, N., Morooka, T., Norimoto, M. (1996) Dimensional stabilization of wood composites by steaming: I. Fixation of compressed wood by pre-steaming. In: Proc. Third Pacific Rim Bio-Based Composites Symposium, Kyoto, pp. 240–248.Google Scholar

  • Inoue, M., Sekino, N., Morooka, T., Rowell, R.M., Norimoto, M. (2008) Fixation of compressive deformation in wood by pre-steaming. J. Tropical Forest Sci. 20:27–281.Google Scholar

  • Ito, Y., Tanahashi, M., Shigematsu, M., Shinoda, Y., Otha, C. (1998) Compressive-molding of wood by high-pressure steam-treatment: part 1. Development of compressively molded squares from thinnings. Holzforschung 52:211–216.Google Scholar

  • Kamke, F.A. (2013) THM – a technology platform or novelty product? In: Characterization of Modified Wood in Relation to Wood Bonding and Coating Performance. Proceedings of the COST FP0904 and FP1003 International Workshop. Eds. Medved, S., Kutnar, A., Rogla, Slovenia, October 16–18, 2013. pp. 8–15.Google Scholar

  • Kamke, F.A., Casey, L.J. (1988) Fundamentals of flakeboard manufacture: internal-mat conditions. Forest Prod. J. 38:38–44.Google Scholar

  • Kamke, F.A., Sizemore, H. (2008) Viscoelastic thermal compression of wood. U.S. Patent Application No. U.S. Patent No. 7.404.422.Google Scholar

  • Kärenlampi, P.P., Tynjälä, P., Ström, P. (2003) Effect of T and compression on the mechanical behavior of steam-treated wood. J. Wood Sci. 49:298–304.CrossrefGoogle Scholar

  • Kelley, S.S., Rials, T.G., Glasser, W.G. (1987) Relaxation behaviour of the amorphous components of wood. J. Mater. Sci. 22:617–624.CrossrefGoogle Scholar

  • Kennedy, R.W. (1968) Wood in transverse compression. Forest Prod. J. 18:36–40.Google Scholar

  • Knust, C., Haller, P., Krug, D., Tobisch, S. (2008) Einsatzmöglichkeiten von Plantagenholz. (Potential of plantation wood.) Schweizerische Zeitschrift Forstwesen 159:146–151.Google Scholar

  • Koehler, A., Pillow, M.Y. (1925) Effect of high temperatures on the mode of fracture of a softwood. Southern Lumberman 121:219–221.Google Scholar

  • Kollmann, F.F.P. Technologie des Holzes. (Wood Technology.) Verlag von Julius Springer, Berlin, 1936.Google Scholar

  • Kollmann, F.F.P., Kuenzi, E.W., Stamm, A.J. Principles of Wood Science and Technology. Vol. II: Wood Based Materials. Springer-Verlag, New York, Heidelberg, Berlin, 1975.Google Scholar

  • Kultikova, E.V. (1999) Structure and properties relationships of densified wood. Master thesis. Virginia Tech, Blacksburg, VA.Google Scholar

  • Küch, W. (1951) Über die Vergütung des Holzes durch Verdichtung des Gefüges. (Improvement of wood properties by compression of the cell structure.) Holz Roh Werkst. 9:305–317.CrossrefGoogle Scholar

  • Kunesh, R.H. (1961) The inelastic behavior of wood: a new concept for improved panel forming processes. Forest Prod. J. 11:395–406.Google Scholar

  • Kutnar, A., Kamke, F.A. (2012) Compression of wood under saturated steam, superheated steam, and transient conditions at 150°C, 160°C, and 170°C. Wood Sci. Technol. 46:73–88.CrossrefGoogle Scholar

  • Kutnar, A., Kamke, F.A., Sernek, M. (2008a) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh Werkst. 66:439–446.CrossrefGoogle Scholar

  • Kutnar, A., Kamke, F.A., Petrič, M., Sernek, M. (2008b) The influence of viscoelastic thermal compression on the chemistry and surface energetics of wood. Colloid Surf. A. 329:82–86.Google Scholar

  • Kutnar, A., Kamke, F.A., Nairn, J.A., Sernek, M. (2008c) Mode II fracture behavior of bonded viscoelastic thermal compressed wood. Wood Fiber Sci. 40:362–373.Google Scholar

  • Kutnar, A., Kamke, F.A., Sernek, M. (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci. Technol. 43:57–68.CrossrefGoogle Scholar

  • Laine, K. (2014) Improving the properties of wood by surface densification. PhD thesis, Department of Forest Products Technology, Aalto University.Google Scholar

  • Laine, K., Rautkari, L., Hughes, M., Kutnar, A. (2013) Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Holz Roh Werkst. 71:17–23.CrossrefGoogle Scholar

  • Lenth, C.A. (1999) Wood Material Behavior in Severe Environments. PhD dissertation. Virginia Tech, Blacksburg, VA. pp. 122.Google Scholar

  • Lenth, C.A., Kamke, F.A. (1996) Investigations of flakeboard mat consolidation: Part I. Characterizing the cellular structure. Wood Fiber Sci. 28:153–167.Google Scholar

  • Li, T., Cai, J., Zhou, D. (2013) Optimization of the combined modification process of thermo-mechanical densification and heat treatment on Chinese fir wood. BioResources 8:5279–5288.Google Scholar

  • Manthey, C., Günther, E., Heiduschke, A., Haller, P., Heistermann, T., Veljkovic, M., Hájek, P. (2009) Structural, economic and environmental performance of fibre reinforced wood profiles vs. solutions made of steel and concrete. In: Proceedings COST C25, Sustainable Constructions – Integrated Approach to Life-time Structural Engineering. Eds. Braganca, L., et al., Timisoara, Romania. pp. 275–289.Google Scholar

  • Morsing, N. (2000) Densification of wood – the influence of hygrothermal treatment on compression of beech perpendicular to the grain. Department of Structural Engineering and Materials, Technical University of Denmark, Series R, 79. pp. 138.Google Scholar

  • Nairn, J.A. (2006) Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci. 38:576–591.Google Scholar

  • Navi, P., Girardet, F. (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54:287–293, 360.CrossrefGoogle Scholar

  • Navi, P., Heger, F. (2004) Combined Densification and Thermo-Hydro-Mechanical Processing of Wood. Materials Research Society, Bulletin, 2004. pp. 332–336.Google Scholar

  • Navi, P., Sandberg, D. Thermo-Hydro-Mechanical Processing of Wood. Presses Polytechniques et Universitaires Romandes, Lausanne, 2012. pp. 360.Google Scholar

  • Navi, P., Huguenin, P., Girardet, F. (1997) Development of synthetic-free plastified wood by thermohygromechanical treatment. In: Proc. The Use of Recycled Wood and Paper in Building Applications. For. Prod. Soc. Proc. No. 7286, Madison, WI. pp. 168–171.Google Scholar

  • Nilsson, J., Johansson, J., Kifetew, G., Sandberg, D. (2011) Shape stability of modified engineering wood product subjected to moisture variation. Wood Mat. Sci. Eng. 6:132–139.Google Scholar

  • Norimoto, M., Ota, C., Akitsu, H., Yamada, T. (1993) Permanent fixation of bending deformation in wood by heat treatment. Wood Res. 79:23–33.Google Scholar

  • Olesheimer, L.J. (1929) Compressed laminated fibrous product and processes of making the same. U.S. Patent No. 1707135.Google Scholar

  • Olson, A.G. (1934) Process of shrinking wood. U.S. Patent No. 1981567.Google Scholar

  • Östberg, G., Salmen, L., Terlecki, J. (1990) Softening T of moist wood measured by differential calorimetry. Holzforschung 44:223–225.CrossrefGoogle Scholar

  • Placet, V., Passard, J., Perré, P. (2007) Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0–95°C: hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung 61:548–557.Google Scholar

  • Popescu, M.C., Lisa, G., Froidevaux, J., Navi, P., Popescu, C.M. (2014) Evaluation of the thermal stability and set recovery of thermo-hydro-mechanically treated lime (Tilia cordata) wood. Wood Sci. Technol. 48:85–97.CrossrefGoogle Scholar

  • Rautkari, L., Properzi, M., Pichelin, F., Hughes, M. (2010) Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44:679–691.CrossrefGoogle Scholar

  • Rautkari, L., Kamke, F.A., Hughes, M. (2011a) Density profile relation to hardness of viscoelastic thermal compressed (VTC) wood composite. Wood Sci. Technol. 45:693–705.CrossrefGoogle Scholar

  • Rautkari, L., Laine, K., Laflin, N., Hughes, M. (2011b) Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. J. Mater. Sci. 46:4780–4786.CrossrefGoogle Scholar

  • Reiterer, A., Stanzl-Tschegg, S.E. (2001) Compressive behavior of softwood under uniaxial loading at different orientations to the grain. Mech. Mater. 33:705–715.Google Scholar

  • Reynolds, M.S. (2004) Hydro-thermal stabilization of wood-based materials. Master thesis. Virginia Tech, Blacksburg, VA. 155 pp.Google Scholar

  • Sadoh, T. (1981) Viscoelastic properties of wood in swelling systems. Wood Sci. Technol. 15:57–66.CrossrefGoogle Scholar

  • Sandberg, D. (1998) Inverkan av isostatisk komprimering på cellstrukturen. (The influence of isostatic compression on the cell wall structure of wood.) KTH, Wood Technology and Processing, Report, TRITA-TRÄ R-98-35 ISSN 1104-2117.Google Scholar

  • Sandberg, D., Johansson, J. (2005) A new method for bending solid wood – high frequency heating of beech. In: Hardwood Research and Utilisation in Europe: New Challenges. The 2nd European Conference on Hardwood. Ed. Bejo, L., University of West Hungary, Sopron. pp. 151–155.Google Scholar

  • Sandberg, D., Haller, P., Navi, P. (2013) Thermo-hydro-mechanical (THM) wood treatments. Wood Mat. Sci. Eng. 8:64–88.Google Scholar

  • Schreiber, J., Hampel, U., Haller, P. (2011) Measurement of the density distribution in wood using X-ray tomographie; proceedings: COST FP 0904 workshop on mechano-chemical transformations of wood during THM processing. Eds. Navi, P., Roth, A., Berne University of Applied Sciences, Biel, Switzerland. pp. 85.Google Scholar

  • Sears, C.U. (1900) Preparing wood matrices. U.S. Patent No. 646547.Google Scholar

  • Seborg, R.M., Millet, M.A., Stamm, A.J. (1945) Heat stabilized compressed wood: Staypack. Mech. Eng. 67:25–31.Google Scholar

  • Smith, I., Landis, E., Gong, M. Fracture and Fatigue in Wood. Wiley, Chichester, UK, 2003.Google Scholar

  • Stamm, A.J., Burr, H.K., Kline, A.A. (1946) Staybwood: heat-stabilized wood. Ind. Eng. Chem. 38:630–634.CrossrefGoogle Scholar

  • Standfest, G., Kutnar, A., Plank, B., Petutschnigg, A., Kamke, F.A., Dunky, M. (2013) Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography. Wood Sci. Technol. 47:121–139.CrossrefGoogle Scholar

  • Tabarasa, T., Chui, Y. H. (1997) Effects of hot-pressing on properties of white spruce. Forest Prod. J. 47:71–76.Google Scholar

  • Tabarsa, T., Chui, Y.H. (2000) Stress-strain response of wood under radial compression: part I. Test method and influences of cellular properties. Wood Fiber Sci. 32:144–152.Google Scholar

  • Thoemen, H., Ruf, C. (2008) Measuring and simulating the effects of the pressing schedule on the density profile development in wood-base composites. Wood Fiber Sci. 40:325–338.Google Scholar

  • Tiemann, H.D. (1915) The effect of different methods of drying on the strength of wood. Lumber World Rev. 28:19–20.Google Scholar

  • Tomme, F-P., Girardet, F., Gfeller, B., Navi, P. (1998) Densified wood: an innovative product with highly enhanced characteristics. In: Proc. World Conf. on Timber Engineering. Eds. Natterer, J., Sandoz, J-L., Swiss Fed. Inst. Tech., August 17–20.Google Scholar

  • Uhmeier, A., Morooka, T., Norimoto, M. (1998) Influence of thermal softening and degradation on radial compression behavior of wet spruce. Holzforschung 52:77–81.CrossrefGoogle Scholar

  • Vorreiter, L. Holztechnologisches Handbuch. (Wood Technology Handbook.) Band 2, Verlag Georg Fromme & Co., Wien, 1949.Google Scholar

  • Walsh, F.L., Watts, R.L. (1923) Composite lumber. U.S. Patent No. 1465383.Google Scholar

  • Wang, J.Y., Cooper, P.A. (2005) Effect of grain orientation and surface wetting on vertical density profiles of thermally compressed fir and spruce. Holz Roh Werkst. 63:397–402.CrossrefGoogle Scholar

  • Wang, X., Deng, Y., Wang, S., Min, C., Meng, Y., Pham, T., Ying, Y. (2014) Evaluation of the effects of compression combined with heat treatment by nanoindentation (NI) of poplar cell walls. Holzforschung 68:167–173.CrossrefGoogle Scholar

  • Wehsener, J., Haller, P., Hartig, J., Werner, T-E. (2013) Continuous wood densification process of circular profiles. In: COST Action FP0904 Workshops, Book of Abstracts – Evaluation, Processing and Predicting of THM Treated Wood Behaviour by Experimental and Numerical Methods. Iasi. pp. 97–98.Google Scholar

  • Wehsener, J., Weser, T., Haller, P., Diestel, O., Cherif, C. (2014) Textile reinforcement of multidimensional formable wood. Eur. J. Wood Prod. 72:463–475.Google Scholar

  • Welzbacher, C.R., Wehsener, J., Rapp, A.O., Haller, P. (2008) Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale – dimensional stability and durability aspects. Holz Roh Werkst. 66:39–49.CrossrefGoogle Scholar

  • Werner, F., Richter, K. (2007) Wood building products in comparative LCA. A literature review. Int. J. LCA 12:470–479.Google Scholar

  • Wilson, T.R.C. (1920) The effect of kiln drying on the strength of airplane woods. National Advisory Committee for Aeronautics, Washington DC, Report No. 68.Google Scholar

  • Winandy, J.E., Krzysik, A.M. (2007) Thermal degradation of wood fibers during hot-pressing of MDF composites: part I. Relative effects and benefits of thermal exposure. Wood Fiber Sci. 39:450–461.Google Scholar

  • Wolcott, M.P. (1989) Modelling viscoelastic cellular materials for the pressing of wood composites. PhD dissertation. Virginia Tech, Blacksburg, VA. 182 pp.Google Scholar

  • Wolcott, M.P., Shutler, E.L. (2003) Temperatures and moisture influence on compression – recovery behavior of wood. Wood Fiber Sci. 35:540–551.Google Scholar

  • Wolcott, M.P., Kamke, F.A., Dillard, D.A. (1990) Fundamentals of flakeboard manufacture: viscoelastic behavior of the wood component. Wood Fiber Sci. 22:345–361.Google Scholar

  • Wolcott, M.P., Kamke, F.A., Dillard, D.A. (1994) Fundamental aspects of wood deformation pertaining to manufacture of wood-base composites. Wood Fiber Sci. 26:496–511.Google Scholar

About the article

Corresponding author: Andreja Kutnar, Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia; and Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, SI-6000 Koper, Slovenia, e-mail:


Received: 2014-06-29

Accepted: 2015-03-27

Published Online: 2015-05-01

Published in Print: 2015-09-01


Citation Information: Holzforschung, Volume 69, Issue 7, Pages 885–897, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0187.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Robert Fleischhauer, Jens U. Hartig, Peer Haller, and Michael Kaliske
Engineering Computations, 2018
[2]
Jens U. Hartig, Sebastiano Facchini, and Peer Haller
Construction and Building Materials, 2018, Volume 174, Page 547
[3]
[4]
Matthew Schwarzkopf, Michael Burnard, Guillermo Martínez Pastur, Lucas Monelos, and Andreja Kutnar
Wood Material Science & Engineering, 2017, Page 1
[5]
Tao Li, Jia-bin Cai, Stavros Avramidis, Da-li Cheng, Magnus E.P. Wålinder, and Ding-guo Zhou
Holzforschung, 2017, Volume 71, Number 6
[6]
Claude Feldman Pambou Nziengui, Samuel Ikogou, and Rostand Moutou Pitti
Wood Material Science & Engineering, 2017, Page 1
[7]
Pierre-Yves Lallart, Jörg Wehsener, Jens Hartig, and Peer Haller
European Journal of Wood and Wood Products, 2017, Volume 75, Number 2, Page 281
[8]
Jens U. Hartig, Jörg Wehsener, and Peer Haller
Construction and Building Materials, 2016, Volume 126, Page 527
[9]
Aoi Hirano, Eiichi Obataya, and Koji Adachi
European Journal of Wood and Wood Products, 2016, Volume 74, Number 5, Page 685

Comments (0)

Please log in or register to comment.
Log in