Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 69, Issue 7

Issues

Nonlinear tensile creep behavior of radiata pine at elevated temperatures and different moisture contents

Hamish Pearson
  • Corresponding author
  • New Zealand Forest Research Institute (Scion), 49 Sala Street, Private Bag 3020, Rotorua, New Zealand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sigurdur Ormarsson / Brian Gabbitas
Published Online: 2014-12-10 | DOI: https://doi.org/10.1515/hf-2014-0240

Abstract

Tensile wood creep has not been measured previously in the temperature region 135°C–150°C for a range of moisture content (MC) up to fiber saturation point due to equipment and measurement challenges. Yet this is the region where the most dramatic softening effects can be observed. The aim of this study was to develop specialized equipment to measure tensile solid wood creep over 70°C–150°C for a range of MC and loads. Creep displacement was successfully able to be isolated from elastic and mechanosorptive strains and statistically modeled by regression analysis. This proved more accurate than complex series expansions consisting of spring- and dashpot-type components. The best creep displacement relationship was a power law with a strain root mean square error of 0.28%. The amplitude of the power law was nonlinear with respect to stress and temperature and changed by a stress factor of up to 0.9 for a stress of up to 1.2 MPa and by a temperature factor 1.2–6.3 over the investigated range. The creep relationship provides a valuable tool for predicting time-dependent distortion and internal stress of wood during drying or thermohygromechanical modification below 150°C.

Keywords: high temperature; material properties; moisture content; nonlinear creep; softening; tensile creeping; thermohygromechanical (THM); wood

References

  • Akgül, M., Korkut, S., Gümüşkaya, E. (2007) Crystalline structure of heat-treated Scots pine (Pinus sylvestris L.) and Uludağ fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci. Technol. 41:281–289.CrossrefWeb of ScienceGoogle Scholar

  • Armstrong, L.D., Christensen, G.N. (1961) Influence of moisture changes on deformation of wood under stress. Nature 191:869–870.Google Scholar

  • Boyd, J.D. (1982) An anatomical explanation for viscoelastic and mechanosorptive creep in wood, and effects of loading rate on strength. In: New Perspectives in Wood Anatomy. Ed. Bass, P. International Association of Wood Anatomists. Junk Publishers, The Hague/Hingham, MA, USA. pp. 171–222.Google Scholar

  • Chen, G., Keey, R.B., Walker, J.C.F. (1997a) The drying stress and check development on high-temperature kiln seasoning of sapwood Pinus radiata boards. Part I: moisture movement and strain model. Holz Roh- Werkst. 55:59–64.CrossrefGoogle Scholar

  • Chen, G., Keey, R.B., Walker, J.C.F. (1997b) The drying stress and check development on high-temperature kiln seasoning of sapwood Pinus radiata boards. Part II: stress development. Holz Roh- Werkst. 55:169–173.CrossrefGoogle Scholar

  • Dinwoodie, J.M. (2000) Timber: Its Nature and Behaviour. E&FN Spon. 2nd ed. London, UK, pp.257.Google Scholar

  • Divós, F., Tanaka, T. (2000) Effects of creep on modulus of elasticity determination of wood. J. Vibrat. Acoust. 122:89–92.Google Scholar

  • Grossman, P.U.A. (1971) Use of Leicester’s “rheological model for mechano-sorptive deflections of beams”. Wood Sci. Technol. 5:232–235.CrossrefGoogle Scholar

  • Hanhijarvi, A. (1995) Modelling of creep deformation mechanisms in wood. Doctor of Technology thesis/dissertation, Helsinki University, Finland.Google Scholar

  • Hanhijarvi, A. (1998) Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part I. Experimental techniques for conditions simulating the drying process and results on shrinkage, hygrothermal deformation, modulus of elasticity and strength. Holz Roh- Werkst. 56:373–380.Google Scholar

  • Hanhijarvi, A. (1999) Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part II. Experimental results under constant conditions (viscoelastic creep). Holz Roh- Werkst. 57:365–372.CrossrefGoogle Scholar

  • Hanhijarvi, A. (2000a) Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part III, Experimental results under drying conditions (mechanosorptive creep). Holz Roh- Werkst. 58:63–71.CrossrefGoogle Scholar

  • Hanhijarvi, A. (2000b) Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part IV. Modelling. Holz Roh- Werkst. 58:211–216.CrossrefGoogle Scholar

  • Haque, M.N., Langrish, T.A.G., Keep, L., Keey, R.B. (2000) Model fitting for viscoelastic creep of Pinus radiata during kiln drying. Wood Sci. Technol. 34:447–457.CrossrefGoogle Scholar

  • Hill, C. (2006) In: Wood Modification: Chemical, Thermal and Other Processes. Ed. Stevens, C.V. John Wiley & Sons Ltd., West Sussex, England. pp. 239.Google Scholar

  • Hunt, D.G. (1986) The mechano-sorptive creep susceptibility of two softwoods and its relation to some other materials properties. J. Mater. Sci. 21:2088–2096.CrossrefGoogle Scholar

  • Hunt, D.G. (1999) A unified approach to creep of wood. Proc. R. Soc. Lond. A 455:4077–4095.Google Scholar

  • Hunt, D.G., Gril, J. (1996) Evidence of a physical ageing phenomenon in wood. J. Mater. Sci. Lett. 15:80–82.CrossrefGoogle Scholar

  • Kamke, F.A., Kutnar, A. (2014) Comparison of transverse compression creep of Pseudotsuga menziesii and Populus sp. in high-temperature steam environments. Wood Mater. Sci. Eng. 9:84–91.Google Scholar

  • Keep, L. (1998) The Determination of Time-Dependent Strains in Pinus radiata Under kiln-Drying Conditions. Master’s degree in Chemical and Process Engineering, University of Canterbury, New Zealand. pp. 222.Google Scholar

  • Keep, L., Keey, R.B. (2000) Determination of cross grain properties of clearwood samples under kiln drying conditions at temperature up to 140C. Drying Technol. 18:1221–1237.Google Scholar

  • Kutnar, A., Kamke, F. (2012) Compression of wood under saturated steam, superheated steam, and transient conditions at 150°C, 160°C, and 170°C. Wood Sci. Technol. 46:73–88.Web of ScienceCrossrefGoogle Scholar

  • Lagaňa, R., Babiak, M., Krakovsky, A. (2008) Creep parameters of spruce wood in high temperature environment. Maderas Ciencia Tecnol. 10:19–24.Google Scholar

  • Leicester, R.H. (1971) A rheological model for mechano-sorptive deflection of beams. Wood Sci. Technol. 5:211–220.CrossrefGoogle Scholar

  • Lofty, M., El-osta, M., Wellwood, R.W. (1972) Short term creep as related to microfibril angle. Wood Fiber Sci. 4:26–32.Google Scholar

  • Montero, C., Gril, J., Legeas, C., Hunt, D.G., Clair, B. (2012) Influence of hygromechanical history on the longitudinal mechanosorptive creep of wood. Holzforschung 66:757–764.Web of ScienceGoogle Scholar

  • Naumenko, K., Altenbach, H. Modeling of Creep for Structural Analysis. Springer, Berlin/Heidelberg, Germany, 2007. DOI 10.1007/978-3-540-70839-1.CrossrefGoogle Scholar

  • Ormarsson, S. (1999) Numerical analysis of moisture-related distortions in sawn timber. Doctor of Engineering thesis. Department of Structural Mechanics, Chalmers University of Technology, Sweden. pp. 213.Google Scholar

  • Ormarsson, S., Dahlblom, O., Petersson, H. (1998) A numerical study of the shape stability of sawn timber subjected to moisture variation. Part 1: theory. Wood Sci. Technol. 32:325–334.CrossrefGoogle Scholar

  • Ottosen, N.S., Ristinmaa, M. The Mechanics of Constitutive Modelling. Elsevier Ltd., The Boulevard, Langford, Kidlington, Oxford, UK, 2005. pp. 700.Google Scholar

  • Ouis, D. (2002) On the frequency dependence of the modulus of elasticity of wood. Wood Sci. Technol. 36:335–346.CrossrefGoogle Scholar

  • Passard, J., Perré, P. (2005a) Viscoelastic behaviour of green wood across the grain. Part I. Thermally activated creep tests up to 120 °C. Ann. For. Sci. 62:707–716.CrossrefGoogle Scholar

  • Passard, J., Perré, P. (2005b) Viscoelastic behaviour of green wood across the grain. Part II. A temperature dependent constitutive model defined by inverse method. Ann. For. Sci. 62:823–830.CrossrefGoogle Scholar

  • Pearson, H. (2010) Material properties and stress modelling of radiata pine at high temperature. Doctoral thesis. School of Engineering, University of Waikato, Hamilton, New Zealand. pp. 481.Google Scholar

  • Pearson, H., Gabbitas, B., Ormarsson, S. (2012a) Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges. J. Mater. Sci. 48:332–341.CrossrefGoogle Scholar

  • Pearson, H., Gabbitas, B., Ormarsson, S. (2012b) Tensile behaviour of radiata pine with different moisture contents at elevated temperatures. Holzforschung 66:659–665.Web of ScienceGoogle Scholar

  • Perré, P., Aguiar, O. (1999) Creep at high temperature (120 °C) of ‘green’ wood and modelling by thermo-activated Kelvin’s elements. Ann. For. Sci. 56:403–416.Google Scholar

  • Placet, V., Passard, J., Perré, P. (2008) Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 °C: evidence of thermal degradation. J. Mater. Sci. 43:3210–3217.CrossrefGoogle Scholar

  • Ranta-Maunus, A. (1975) The viscoelasticity of wood at varying moisture content. Wood Sci. Technol. 9:189–205.CrossrefGoogle Scholar

  • Salin, J. (2010) Inclusion of the sorption hysteresis phenomenon in future drying models: some basic considerations. In: Inclusion of the Sorption Hysteresis Phenomenon in Future Drying Models: Some Basic Considerations. The Future of Quality Control for Wood and Wood Products, COST Action E53 Conference, May 4–7, Edinburgh, Scotland, UK.Google Scholar

  • Salmén, N.L. (1984) Viscoelastic properties of in situ lignin under water-saturated conditions. J. Mater. Sci. 19:3090–3096.CrossrefGoogle Scholar

  • Schniewind, A.P. (1966) On the influence of moisture content changes on the creep of beech wood perpendicular to the grain including the effects of temperature and temperature changes. Holz Roh- Werkst. 24:87–98.CrossrefGoogle Scholar

  • Schniewind, A.P. (1968) Recent progress in the study of the rheology of wood. Wood Sci. Technol. 2:188–206.Google Scholar

  • Stamm, A.J. (1956) Thermal degradation of wood and cellulose. Ind. Eng. Chem. 48:413–417.CrossrefGoogle Scholar

  • Sun, N., Frazier, C.E. (2007) Time/temperature equivalence in the dry wood creep response. Holzforschung 61:702–706.Web of ScienceGoogle Scholar

  • Svensson, S. (1997) Internal Stress in Wood Caused by Climate Variations. Report TVBK-1013. Lund Institute of Technology, Department of Structural Engineering, Lund, Sweden. pp. 110.Google Scholar

  • Tiemann, H.D. (1915) Problems in kiln drying lumber. Lumber World Rev. 29:21–23.Google Scholar

  • Vicat, L.J. (1834) Note sur l’allongement progressif du fil de fer soumis à diverses tensions. Annales des ponts et chaussées. Mémoires et documents relatifs à l’art des constructions et au service de l’ingénieur 165:40–44.Google Scholar

About the article

Corresponding author: Hamish Pearson, New Zealand Forest Research Institute (Scion), 49 Sala Street, Private Bag 3020, Rotorua, New Zealand, e-mail:


Received: 2014-09-02

Accepted: 2014-11-04

Published Online: 2014-12-10

Published in Print: 2015-09-01


Citation Information: Holzforschung, Volume 69, Issue 7, Pages 915–923, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0240.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in