Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 69, Issue 8

Issues

Damage evolution in wood: synchrotron radiation micro-computed tomography (SRμCT) as a complementary tool for interpreting acoustic emission (AE) behavior

Franziska Baensch
  • Corresponding author
  • ETH Zurich – Institute for Building Materials, Zürich, CH-8093, Switzerland
  • Eberswalde University for Sustainable Development – Wood Science and Technology, Eberswalde, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michaela Zauner / Sergio J. Sanabria / Markus G.R. Sause
  • Institute for Physics, Experimental Physics II – University of Augsburg, Augsburg, D-86135, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernd R. Pinzer / Andreas J. Brunner
  • Empa, Swiss Federal Laboratories for Materials Science and Technology – Faculty for Mechanical Engineering, Dübendorf, CH-8600, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Stampanoni / Peter Niemz
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/hf-2014-0152

Abstract

Tensile tests of miniature spruce wood specimens have been performed to investigate the damage evolution in wood at the microscopic scale. For this purpose, the samples were stepwise tensile loaded in the longitudinal (L) and radial (R) directions and the damage evolution was monitored in real-time by acoustic emission (AE) and synchrotron radiation micro-computed tomography (SRμCT). This combination is of outstanding benefit as SRμCT monitoring provides an insight on the crack evolution and the final fracture at microscopic scale, whereas AE permits the detection of the associated accumulation and interaction of single damage events on all length scales with high time resolution. A significant drawback of the AE testing of wood has been overcome by means of calibrating the AE amplitudes with the underlying crack length development. Thus, a setup-dependent and wood species-dependent calibration value was estimated, which associates 1 μm2 crack area generating of 0.0038 mV in the detected AE amplitude. Furthermore, for both L and R specimens, AE signals were classified into two clusters by using a frequency-based approach of unsupervised pattern recognition. The shares of AE signals of both clusters correlate with the ratio of the relative crack area of the interwall and transwall cracks gained from the fractographic analysis of SRμCT scans.

Keywords: acoustic emission (AE); damage evolution; in situ monitoring; spruce; synchrotron radiation micro-computed tomography (SRμCT); tensile test; unsupervised pattern recognition (UPR)

References

  • Ashby, M.F., Easterling, K.E., Harrysson R., Maiti, S.K. (1985) The fracture and toughness of woods. Proc. R. Soc. Lond. A 261–280.Google Scholar

  • Baensch, F., Sause, M.G.R., Brunner, A.J., Niemz, P. (2015) Damage evolution in wood – pattern recognition based on acoustic emission frequency spectra. Holzforschung 69:357–365.Web of ScienceGoogle Scholar

  • Cazaux, J., Erre, D., Mouze, D., Patat, J.M., Rondot, S., Sasov, A., Trebbia, P., Zolfaghari, A. (1993) Recent developments in X-ray projection microscopy and X-ray microtomography applied to materials science. J. Phys. III 3:2099–2105.Google Scholar

  • Chotard, T.J., Smith, A., Bonceur, M.P. Fargeot, D., Gault, C. (2003) Characterisation of early stage calcium aluminate cement hydration by combination of non-destructive techniques: acoustic emission and X-ray tomography. J. Eur. Ceram. Soc. 23:2211–2223.Google Scholar

  • Cousin, W.J. (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci. Technol. 12:161–167.Google Scholar

  • Derome, D., Griffa, M., Koebel, M., Carmeliet, J. (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J. Struct. Biol. 173:180–190.Web of ScienceGoogle Scholar

  • Eder, M., Jungnikl, K., Burgert, I. (2009) A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.). Trees Struct. Funct. 23:79–84.Google Scholar

  • Elaqra, H., Godin, N., Peix, G., R’Mili, M.R., Fantozzi, G. (2007) Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: effects of the sand/cement ratio. Cem. Concr. Res. 37:703–713.Web of ScienceGoogle Scholar

  • Frühmann, K., Burgert, I., Stanzl-Tschegg, S.E. (2003) Detection of the fracture path under tensile loads through in situ tests in an ESEM chamber. Holzforschung 57:326–332.Google Scholar

  • Forsberg, F., Mooser, R., Arnold, M., Hack, E., Wyss, P. (2008) 3D micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation. J. Struct. Biol. 164:255–262.Web of ScienceGoogle Scholar

  • Harris, D.O., Tetelman, A.S., Darwish, F.A. (1972) Detection of fiber cracking by acoustic emission. ASTM STP 505:238–249.Google Scholar

  • Kurz, J.H., Köppel, S., Linzer, L., Schechinger, B., Grosse, C. (2008) Source localization. In: Acoustic Emission Testing in Engineering – Basics and Applications. Eds. Grosse, C., Ohtsu, M. Springer-Verlag, Heidelberg. pp. 108–109.Google Scholar

  • Lysak, M.V. (1996) Development of the theory of acoustic emission by propagating cracks in terms of fracture mechanics. Eng. Fract. Mech. 55:443–452.Google Scholar

  • Maire, E., Carmona, V., Courbon, J., Ludwig, W. (2007) Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater. 55:6806–6815.Google Scholar

  • Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R., Wilkins, S.W. (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206:33–40.Google Scholar

  • Radon, J.C., Pollock, A.A. (1972) Acoustic emission and energy transfer during crack propagation. Eng. Fract. Mech. 4: 295–310.Google Scholar

  • Reiterer, A., Burgert, I., Sinn, G., Tschegg, S. (2002) The radial reinforcement of the wood structure and its implication on mechanical and fracture mechanical properties – a comparison between two tree species. J. Mater. Sci. 37:935–940.Google Scholar

  • Saavedra Flores, E.I., Friswell, M.I. (2013) Ultrastructural mechanisms of deformation and failure in wood under tension. Int. J. Solids Struct. 50:2050–2060.Web of ScienceGoogle Scholar

  • Sause, M.G.R. (2010) Identification of Failure Mechanisms in Hybrid Materials Utilizing Pattern Recognition Techniques Applied to Acoustic Emission Signals. Dissertation. ISBN: 978-3-86664-889-0. mbv-Verlag, Berlin, pp. 305.Google Scholar

  • Sause, M.G.R., Gribov, A., Unwin, A.R., Horn, S. (2012a) Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recog. Lett. 33:17–23.Web of ScienceGoogle Scholar

  • Sause, M.G.R., Müller, T., Horoschenkoff, A., Horn, S. (2012b) Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos. Sci. Technol. 72:167–174.Web of ScienceGoogle Scholar

  • Scruby, C.B. (1985) Quantitative acoustic emission technique. Nondestr. Test. 8:158–159.Google Scholar

  • Sonderegger, W., Alter, P., Niemz, P. (2008) Investigations on selected properties of tonal wood of spruce from Grisons. Holz Roh Werkst. 66:345–354.Web of ScienceGoogle Scholar

  • Stampanoni, M., Groso, A., Isenegger, A., Mikuljan, G., Chen, Q., Bertrand, A., Henein, S., Betemps, R., Frommherz, U., Böhler, P., Meister, D., Lange, M., Abela, R. (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. Proc. SPIE 6318:M1–M14.Google Scholar

  • Stampanoni, M., Groso, A., Isenegger, A., Mikuljan, G., Chen, Q., Meister, D., Lange, M., Betemps, R., Henein, S., Abela, R. (2007) TOMCAT: a beamline for tomographic microscopy and coherent radiology experiments. Synchroton Radiat. Instrum. 879:848–851.Google Scholar

  • Steppe, K., Cnudde, V., Girard, C., Lemeur, R., Cnudde, J.-P., Jacobs, P. (2004) Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J. Struct. Biol. 148:11–21.Google Scholar

  • Trtik, P., Dual, J., Keunecke, D., Mannes, D., Niemz, P., Stähli, P., Kaestner, A., Groso, A., Stampanoni, M. (2007) 3D imaging of microstructure of spruce wood. J. Struct. Biol. 159:46–55.Google Scholar

  • Van den Bulcke, J., Boone, M., Van Acker, J., Stevens, M., Van Hoorebeke, L. (2009) X-ray tomography as a tool for detailed anatomical analysis. Ann. For. Sci. 66:508–520.Web of ScienceGoogle Scholar

  • Zauner, M., Keunecke, D., Mokso, R., Stampanoni, M., Niemz, P. (2012) Synchrotron-based tomographic microscopy (SbTM) of wood: development of a testing device and observation of plastic deformation of uniaxially compressed Norway spruce specimens. Holzforschung 66:973–979.Web of ScienceGoogle Scholar

About the article

Corresponding author: Franziska Baensch, ETH Zurich – Institute for Building Materials, Stefano-Franscini-Platz 3 CH-8093 Zürich, Zürich CH-8093, Switzerland, e-mail: ; and Eberswalde University for Sustainable Development – Wood Science and Technology, Eberswalde, Germany


Received: 2014-05-20

Accepted: 2014-12-04

Published Online: 2015-02-06

Published in Print: 2015-10-01


Citation Information: Holzforschung, Volume 69, Issue 8, Pages 1015–1025, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0152.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. Louërat, M. Ayouz, and P. Perré
International Journal of Thermal Sciences, 2018, Volume 130, Page 471
[2]
T. P. S. Reynolds, H. C. Burridge, R. Johnston, G. Wu, D. U. Shah, O. A. Scherman, P. F. Linden, and M. H. Ramage
Journal of The Royal Society Interface, 2018, Volume 15, Number 142, Page 20180144
[3]
Vladimirs Biziks, Jan Van den Bulcke, Juris Grinins, Holger Militz, Bruno Andersons, Ingeborga Andersone, Jelle Dhaene, and Joris Van Acker
Holzforschung, 2016, Volume 70, Number 2

Comments (0)

Please log in or register to comment.
Log in