Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 70, Issue 1


Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane

Likun Gao
  • Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yun Lu / Jian Li
  • Corresponding author
  • Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qingfeng Sun
  • Corresponding author
  • School of Engineering, Zhejiang Agricultural and Forestry University, Lin’an 311300, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-19 | DOI: https://doi.org/10.1515/hf-2014-0226


A simple and effective method for preparing superhydrophobic conductive wood surface with super oil repellency is presented in this paper. Silver nanoparticles (Ag NPs) were prepared on wood surfaces by the treatment with AgNO3, followed by a reduction treatment with glucose to generate a dual-size surface roughness. Further modification of the surface coated with Ag NPs with a fluoroalkyl silane led to a superhydrophobic surface with water contact angle of 155.2°. This surface is also super repellent toward motor oil with the maximal contact angles around 151.8°. Interestingly, the dense Ag NPs coating on the surface is electrically conductive. The presented multifunctional coating could be a commercialized for various applications, especially for self-cleaning and biomedical electronic devices.

Keywords: conductive wood surface; fluoroalkyl silane; oil repellency; silver nanoparticles; superhydrophobic wood surface


  • Andersson, S., Serimaa, R., Paakkari, T., SaranpÄÄ, P., Pesonen, E. (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 49:531–537.Google Scholar

  • Chou, K.-S., Huang, K.-C., Lee, H.-H. (2005). Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method. Nanotechnology 16:779.CrossrefGoogle Scholar

  • Dubas, S.T., Kumlangdudsana, P., Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloid. Surface. A. 289:105–109.Google Scholar

  • Fu, Y., Yu, H., Sun, Q., Li, G., Liu, Y. (2012) Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. Holzforschung, 66:739–744.Web of ScienceGoogle Scholar

  • Fujishima, A., Rao, T.N., Tryk, D.A. (2000). Titanium dioxide photocatalysis. J. Photoch. Photobio. C 1:1–21.Google Scholar

  • Hu, W., Chen, S., Li, X., Shi, S., Shen, W., Zhang, X., Wang, H. (2009). In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mat. Sci. Eng. C-Mater. 29:1216–1219.CrossrefGoogle Scholar

  • Jin, C., Li, J., Han, S., Wang, J., Sun, Q. (2014). A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface. Appl. Surf. Sci. 320:322–327.Web of ScienceGoogle Scholar

  • Li, J., Sun, Q., Jin, C., Li, J. (2015). Comprehensive studies of the hydrothermal growth of ZnO nanocrystals on the surface of bamboo. Ceram. Int. 41:921–929.Web of ScienceGoogle Scholar

  • Liu, F., Gao, Z., Zang, D., Wang, C., Li, J. (2015) Mechanical stability of superhydrophobic epoxy/silica coating for better water resistance of wood. Holzforschung 69:367–374.Web of ScienceGoogle Scholar

  • Lionetto, F., Del Sole, R., Cannoletta, D., Vasapollo, G., Maffezzoli, A. (2012). Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5:1910–1922.Google Scholar

  • Lu, Y., Xiao, S., Gao, R., Li, J., Sun, Q. (2014). Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface. Holzforschung 68:345–351.Web of ScienceGoogle Scholar

  • Mahr, M.S., Hübert, T., Stephan, I., Bücker, M., Militz, H. (2013). Reducing copper leaching from treated wood by sol-gel derived TiO2 and SiO2 depositions. Holzforschung 67:429–435.Google Scholar

  • Ouajai, S., Shanks, R. (2005). Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stabil. 89:327–335.Google Scholar

  • Radetić, M., Ilić, V., Vodnik, V., Dimitrijević, S., Jovančić, P., Šaponjić, Z., Nedeljković, J.M. (2008). Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym. Advan. Technol. 19:1816–1821.Web of ScienceCrossrefGoogle Scholar

  • Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27:76–83.Web of ScienceGoogle Scholar

  • Saleema, N., Sarkar, D.K., Gallant, D., Paynter, R.W., Chen, X.-G. (2011). Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium. ACS Appl. Mater. Inter. 3:4775–4781.CrossrefGoogle Scholar

  • Shateri Khalil-Abad, M., Yazdanshenas, M.E. (2010). Superhydrophobic antibacterial cotton textiles. J. Colloid. Interf. Sci. 351:293–298.Google Scholar

  • Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interf. Sci. 275:177–182.Google Scholar

  • Song, Q., Li, Y., Xing, J., Hu, J.Y., Marcus, Y. (2007). Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer 48:3317–3323.CrossrefGoogle Scholar

  • Tien, H.-W., Huang, Y.-L. Yang, S.-Y., Wang, J.-Y., Ma, C.-C. M. (2011). The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon 49:1550–1560.Google Scholar

  • Wang, C., Yao, T., Wu, J., Ma, C., Fan, Z., Wang, Z., Cheng, Y., Lin, Q., Yang, B. (2009). Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Inter. 1:2613–2617.Google Scholar

  • Wang, S., Liu, C., Liu, G., Zhang, M., Li, J., Wang, C. (2011). Fabrication of superhydrophobic wood surface by a sol-gel process. Appl. Surf. Sci. 258:806–810.Web of ScienceGoogle Scholar

  • Wang, X., Chai, Y., Liu, J. (2013) Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung, 67:667–672.Web of ScienceGoogle Scholar

  • Weichelt, F., Emmler, R., Flyunt, R., Beyer, E., Buchmeiser, M. R., Beyer, M. (2010). ZnO-based UV nanocomposites for wood coatings in outdoor applications. Macromol. Mater. Eng. 295:130–136.Web of ScienceGoogle Scholar

  • Xue, C.-H., Chen, J., Yin, W., Jia, S.T., Ma, J.Z. (2012). Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci. 258:2468–2472.Web of ScienceGoogle Scholar

  • Yang, H., Pi, P., Caia, Z.-Q., Wena, X., Wangb, X., Chenga, J., Yanga, Z.-R. (2010). Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol-gel process. Appl. Surf. Sci. 256:4095–4102.Web of ScienceGoogle Scholar

  • Yu, Y., Jiang, Z., Wang, G., Song, Y. (2010). Growth of ZnO nanofilms on wood with improved photostability. Holzforschung 64:385–390.Web of ScienceGoogle Scholar

  • Yuranova, T., Rincon, A., Pulgarinb, C., Laubc, D., Xantopoulosd, N., Mathieud, H.-J., Kiwia, J. (2006). Performance and characterization of Ag-cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. J. Photoch. Photobio. A 181:363–369.Google Scholar

  • Zhai, L., Cebeci, F.C., Cohen, R.E., Rubner, M.F. (2004). Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4:1349–1353.CrossrefGoogle Scholar

About the article

Corresponding authors: Qingfeng Sun, School of Engineering, Zhejiang Agricultural and Forestry University, Lin’an 311300, P.R. China, e-mail: qfsun@nefu.edu.cn; and Jian Li, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P.R. China, e-mail: jianli@nefu.edu.cn

Received: 2014-08-12

Accepted: 2015-01-16

Published Online: 2015-02-19

Published in Print: 2016-01-01

Citation Information: Holzforschung, Volume 70, Issue 1, Pages 63–68, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0226.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Wenhui Bao, Ming Zhang, Zhen Jia, Yue Jiao, Liping Cai, Daxin Liang, and Jian Li
European Journal of Wood and Wood Products, 2018
Pedro Henrique Gonzalez de Cademartori, Wido Herwig Schreiner, and Washington Luiz Esteves Magalhães
Progress in Organic Coatings, 2018, Volume 125, Page 153
Likun Gao, Wentao Gan, Guoliang Cao, Xianxu Zhan, Tiangang Qiang, and Jian Li
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, Volume 529, Page 487
Likun Gao, Wentao Gan, Zhe Qiu, Guoliang Cao, Xianxu Zhan, Tiangang Qiang, and Jian Li
ACS Applied Nano Materials, 2018
Yuan Tian, Kai Guo, Xiufang Bian, Tianqi Wang, Suhong Chen, and Jiaxiang Sun
Surface and Coatings Technology, 2017
Likun Gao, Shaoliang Xiao, Wentao Gan, Xianxu Zhan, and Jian Li
RSC Adv., 2015, Volume 5, Number 119, Page 98203

Comments (0)

Please log in or register to comment.
Log in